Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 5428-5437, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902625

RESUMO

Targeting immune checkpoints is a well-established strategy in cancer therapy, and antibodies blocking PD-1/PD-L1 interactions to restore the immunological activity against cancer cells have been clinically validated. High-affinity mutants of the PD-1 ectodomain have recently been proposed as an alternative to antibodies to target PD-L1 on cancer cells, shedding new light on this research area. In this dynamic scenario, the PD-1 mutant, here reported, largely expands the chemical space of nonantibody and nonsmall-molecule inhibitor therapeutics that can be used to target cancer cells overexpressing PD-L1 receptors. The polyethylene glycol moieties and the immune response-stimulating carbohydrates, used as site-selective tags, represent the proof of concept for future applications.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/química , Antígeno B7-H1 , Anticorpos , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Angew Chem Int Ed Engl ; 62(31): e202303202, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276329

RESUMO

Several protein-drug conjugates are currently being used in cancer therapy. These conjugates rely on cytotoxic organic compounds that are covalently attached to the carrier proteins or that interact with them via non-covalent interactions. Human transthyretin (TTR), a physiological protein, has already been identified as a possible carrier protein for the delivery of cytotoxic drugs. Here we show the structure-guided development of a new stable cytotoxic molecule based on a known strong binder of TTR and a well-established anticancer drug. This example is used to demonstrate the importance of the integration of multiple biophysical and structural techniques, encompassing microscale thermophoresis, X-ray crystallography and NMR. In particular, we show that solid-state NMR has the ability to reveal effects caused by ligand binding which are more easily relatable to structural and dynamical alterations that impact the stability of macromolecular complexes.


Assuntos
Proteínas de Transporte , Imageamento por Ressonância Magnética , Humanos , Preparações Farmacêuticas , Espectroscopia de Ressonância Magnética , Proteínas de Transporte/química , Cristalografia por Raios X
3.
Bioconjug Chem ; 33(12): 2411-2419, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36458591

RESUMO

Biologics are emerging as the most important class of drugs and are used to treat a large variety of pathologies. Most of biologics are proteins administered in large amounts, either by intramuscular injection or by intravenous infusion. Asparaginase is a large tetrameric protein assembly, currently used against acute lymphoblastic leukemia. Here, a gadolinium(III)-DOTA derivative has been conjugated to asparaginase, and its relaxation properties have been investigated to assess its efficiency as a possible theranostic agent. The field-dependent 1H longitudinal relaxation measurements of water solutions of gadolinium(III)-labeled asparaginase indicate a very large increase in the relaxivity of this paramagnetic protein complex with respect to small gadolinium chelates, opening up the possibility of its use as an MRI contrast agent.


Assuntos
Asparaginase , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos , Quelantes
4.
NMR Biomed ; 35(2): e4623, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34595785

RESUMO

Several fruit juices are used as oral contrast agents to improve the quality of images in magnetic resonance cholangiopancreatography. They are often preferred to conventional synthetic contrast agents because of their very low cost, natural origin, intrinsic safety, and comparable image qualities. Pineapple and blueberry juices are the most employed in clinical practice due to their higher content of manganese(II) ions. The interest of pharmaceutical companies in these products is testified by the appearance in the market of fruit juice derivatives with improved contrast efficacy. Here, we investigate the origin of the contrast of blueberry juice, analyze the parameters that can effect it, and elucidate the differences with pineapple juice and manganese(II) solutions. It appears that, although manganese(II) is the paramagnetic ion responsible for the contrast, it is the interaction of manganese(II) with other juice components that modulates the efficiency of the juice as a magnetic resonance contrast agent. On these grounds, we conclude that blueberry juice concentrated to the same manganese concentration of pineapple juice would prove a more efficient contrast agent than pineapple juice.


Assuntos
Colangiopancreatografia por Ressonância Magnética/métodos , Meios de Contraste/farmacologia , Sucos de Frutas e Vegetais , Frutas , Manganês/farmacologia , Administração Oral
5.
ACS Appl Bio Mater ; 6(2): 591-602, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626688

RESUMO

Diagnostic medical imaging utilizes magnetic resonance (MR) to provide anatomical, functional, and molecular information in a single scan. Nanoparticles are often labeled with Gd(III) complexes to amplify the MR signal of contrast agents (CAs) with large payloads and high proton relaxation efficiencies (relaxivity, r1). This study examined the MR performance of two structurally unique cages, AaLS-13 and OP, labeled with Gd(III). The cages have characteristics relevant for the development of theranostic platforms, including (i) well-defined structure, symmetry, and size; (ii) the amenability to extensive engineering; (iii) the adjustable loading of therapeutically relevant cargo molecules; (iv) high physical stability; and (v) facile manufacturing by microbial fermentation. The resulting conjugates showed significantly enhanced proton relaxivity (r1 = 11-18 mM-1 s-1 at 1.4 T) compared to the Gd(III) complex alone (r1 = 4 mM-1 s-1). Serum phantom images revealed 107% and 57% contrast enhancements for Gd(III)-labeled AaLS-13 and OP cages, respectively. Moreover, proton nuclear magnetic relaxation dispersion (1H NMRD) profiles showed maximum relaxivity values of 50 mM-1 s-1. Best-fit analyses of the 1H NMRD profiles attributed the high relaxivity of the Gd(III)-labeled cages to the slow molecular tumbling of the conjugates and restricted local motion of the conjugated Gd(III) complex.


Assuntos
Nanopartículas , Prótons , Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA