Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Cell Sci ; 126(Pt 18): 4085-98, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23843612

RESUMO

We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Osteoblastos/metabolismo , Animais , Diferenciação Celular , Células-Tronco Mesenquimais/fisiologia , Camundongos , Periósteo , Transdução de Sinais
2.
Dev Biol ; 316(2): 336-49, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339367

RESUMO

To address the functions of FGFR2 and FGFR3 signaling during mandibular skeletogenesis, we over-expressed in the developing chick mandible, replication-competent retroviruses carrying truncated FGFR2c or FGFR3c that function as dominant negative receptors (RCAS-dnFGFR2 and RCAS-dnFGFR3). Injection of RCAS-dnFGFR3 between HH15 and 20 led to reduced proliferation, increased apoptosis, and decreased differentiation of chondroblasts in Meckel's cartilage. These changes resulted in the formation of a hypoplastic mandibular process and truncated Meckel's cartilage. This treatment also affected the proliferation and survival of osteoprogenitor cells in osteogenic condensations, leading to the absence of five mandibular bones on the injected side. Injection of RCAS-dnFGFR2 between HH15 and 20 or RCAS-dnFGFR3 at HH26 did not affect the morphogenesis of Meckel's cartilage but resulted in truncations of the mandibular bones. RCAS-dnFGFR3 affected the proliferation and survival of the cells within the periosteum and osteoblasts. Together these results demonstrate that FGFR3 signaling is required for the elongation of Meckel's cartilage and FGFR2 and FGFR3 have roles during intramembranous ossification of mandibular bones.


Assuntos
Cartilagem/embriologia , Mandíbula/embriologia , Morfogênese/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Células Cultivadas , Embrião de Galinha , Galinhas , Feminino , Osteogênese , Óvulo/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Deleção de Sequência , Transdução de Sinais
3.
Front Biosci ; 8: s1249-65, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12957859

RESUMO

This presentation will focus on using microarray data on a clonal osteoblast cell model to analyze the early BMP-2 responsive genes, as well as some of the later genes regulated by BMP2 during different phases of mineralization. We will focus on the early phases of gene expression that occur after BMP2 signaling from 30 min up to 1 day. The hypothesis is that understanding how these early genes are regulated during the initial multilayering and growth phase of osteoblasts will lead to models of how BMP activity stimulates cell growth, cell migration, multilayering, matrix deposition and remodeling phase that allows subsequent mineralization. The Dlx2 and Dlx5 homeobox genes have been shown to be critical for bone formation both in vitro and in vivo. Both Dlx 2 and Dlx5 are activated within 15-30 minutes after BMP2 addition to the mouse 2T3 osteoblast model and primary fetal rat calvarial osteoblasts. The Dlx2 and Dlx5 genes stay elevated in the presence of BMP2 for up to 5 days, a time when overt mineralization is just beginning. To understand the genomic network that Dlx5 and Dlx2 regulate at the transcription level, we have taken an approach where we use a specific transcription repressor protein, Engrailed, ligated to the Dlx5 homeodomain. The idea is that this Eng-Dlx5 protein will interact with Dlx5 and possibly Dlx2 and related Dlx- regulated genes in vivo and down-regulate their transcriptional initiation. Using a microarray approach with over 5,000 known genes we can identify the genes that are directly and indirectly regulated by Dlx5 and Dlx2. This will allow us to build an initial genomic network of Dlx- regulated genes at the transcriptional level. We will present our model and preliminary efforts at understanding the genomic network regulated by this important BMP2-regulated transcription factor class in osteoblast biology.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osteoblastos/metabolismo , Ativação Transcricional/fisiologia , Fator de Crescimento Transformador beta , Animais , Proteína Morfogenética Óssea 2 , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Osteoblastos/química , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA