Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 72(9): 1663-1673, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38924630

RESUMO

Perinatal white matter injury (WMI) is the leading cause of long-term neurological morbidity in infants born preterm. Neuroinflammation during a critical window of early brain development plays a key role in WMI disease pathogenesis. The mechanisms linking inflammation with the long-term myelination failure that characterizes WMI, however, remain unknown. Here, we investigate the role of astrocyte reactivity in WMI. In an experimental mouse model of WMI, we demonstrate that WMI disease outcomes are improved in mutant mice lacking secretion of inflammatory molecules TNF-α, IL-1α, and C1q known, in addition to other roles, to induce the formation of a neuroinflammatory reactive astrocyte substate. We show that astrocytes express molecular signatures of the neuroinflammatory reactive astrocyte substate in both our WMI mouse model and human tissue affected by WMI, and that this gene expression pattern is dampened in injured mutant mice. Our data provide evidence that a neuroinflammatory reactive astrocyte substate correlates with adverse WMI disease outcomes, thus highlighting the need for further investigation of these cells as potential causal players in WMI pathology.


Assuntos
Animais Recém-Nascidos , Astrócitos , Substância Branca , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Substância Branca/patologia , Substância Branca/metabolismo , Camundongos , Humanos , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Modelos Animais de Doenças , Camundongos Knockout , Recém-Nascido
2.
Artigo em Inglês | MEDLINE | ID: mdl-38316554

RESUMO

In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.


Assuntos
Astrócitos , Doenças do Sistema Nervoso Central , Astrócitos/metabolismo , Humanos , Doenças do Sistema Nervoso Central/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Transdução de Sinais
3.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798554

RESUMO

Persistent central nervous system (CNS) immune dysregulation and consequent dysfunction of multiple neural cell types is central to the neurobiological underpinnings of a cognitive impairment syndrome that can occur following traditional cancer therapies or certain infections. Immunotherapies have revolutionized cancer care for many tumor types, but the potential long-term cognitive sequelae are incompletely understood. Here, we demonstrate in mouse models that chimeric antigen receptor (CAR) T cell therapy for both CNS and non-CNS cancers can impair cognitive function and induce a persistent CNS immune response characterized by white matter microglial reactivity and elevated cerebrospinal fluid (CSF) cytokines and chemokines. Consequently, oligodendroglial homeostasis and hippocampal neurogenesis are disrupted. Microglial depletion rescues oligodendroglial deficits and cognitive performance in a behavioral test of attention and short-term memory function. Taken together, these findings illustrate similar mechanisms underlying immunotherapy-related cognitive impairment (IRCI) and cognitive impairment following traditional cancer therapies and other immune challenges.

4.
Front Mol Neurosci ; 16: 1305949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38240014

RESUMO

Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together "TIC." This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.

5.
Nat Neurosci ; 27(4): 607-609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424325
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA