Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
PLoS Biol ; 21(12): e3002402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048369

RESUMO

Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.


Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/genética , Cílios/metabolismo , Modelos Animais de Doenças , Epitélio , Camundongos Knockout , Retina , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo
2.
J Am Chem Soc ; 146(17): 11991-11999, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639465

RESUMO

The complex dynamics and transience of assembly pathways in living systems complicate the understanding of these molecular to nanoscale processes. Current technologies are unable to track the molecular events leading to the onset of assembly, where real-time information is imperative to correlate their rich biology. Using a chemically designed pro-assembling molecule, we map its transformation into nanofibers and their fusion with endosomes to form hollow fiber clusters. Tracked by phasor-fluorescence lifetime imaging (phasor-FLIM) in epithelial cells (L929, A549, MDA-MB 231) and correlative light-electron microscopy and tomography (CLEM), spatiotemporal splicing of the assembly events shows time-correlated metabolic dysfunction. The biological impact begins with assembly-induced endosomal disruption that reduces glucose transport into the cells, which, in turn, stymies mitochondrial respiration.


Assuntos
Imagem Óptica , Humanos , Endossomos/metabolismo , Nanofibras/química , Linhagem Celular , Animais
3.
J Am Chem Soc ; 146(11): 7222-7232, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469853

RESUMO

Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.


Assuntos
Melaninas , Nanodiamantes , Raios Ultravioleta , Radicais Livres
4.
Small ; 19(46): e2303384, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452438

RESUMO

A bio-inspired membrane made of Pluronic L-121 is produced around Escherichia coli thanks to the simple co-extrusion of bacteria and polymer vesicles. The block copolymer-coated bacteria can withstand various harsh shocks, for example, temperature, pressure, osmolarity, and chemical agents. The polymer membrane also makes the bacteria resistant to enzymatic digestion and enables them to degrade toxic compounds, improving their performance as whole-cell biocatalysts. Moreover, the polymer membrane acts as an anchor layer for the surface modification of the bacteria. Being decorated with α-amylase or lysozyme, the cells are endowed with the ability to digest starch or self-predatory bacteria are created. Thus, without any genetic engineering, the phenotype of encapsulated bacteria is changed as they become sturdier and gain novel metabolic functionalities.


Assuntos
Escherichia coli , Polímeros , Polímeros/química , Escherichia coli/metabolismo , Membrana Celular , Bactérias
5.
Small ; 19(25): e2206454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929281

RESUMO

Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.

6.
BMC Cancer ; 23(1): 762, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587449

RESUMO

BACKGROUND: Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS: Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS: Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS: This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Recidiva Local de Neoplasia , Morte Celular , Processos Neoplásicos , Esfingolipídeos
7.
J Am Chem Soc ; 144(16): 7320-7326, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35363487

RESUMO

Biocatalysis has become a powerful tool in synthetic chemistry, where enzymes are used to produce highly selective products under mild conditions. Using photocatalytically regenerated cofactors in synergistic combination with enzymes in a cascade fashion offers an efficient synthetic route to produce specific compounds. However, the combination of enzymes and photocatalysts has been limited due to the rapid degradation of the biomaterials by photogenerated reactive oxygen species, which denature and deactivate the enzymatic material. Here, we design core-shell structured porous nano-photoreactors for highly stable and recyclable photobiocatalysis under aerobic conditions. The enzymatic cofactor NAD+ from NADH can be efficiently regenerated by the photoactive organosilica core, while photogenerated active oxygen species are trapped and deactivated through the non-photoactive shell, protecting the enzymatic material. The versatility of these photocatalytic core-shell nanoreactors was demonstrated in tandem with two different enzymatic systems, glycerol dehydrogenase and glucose 1-dehydrogenase, where long-term enzyme stability was observed for the core-shell photocatalytic system.


Assuntos
Coenzimas , Glucose 1-Desidrogenase , Biocatálise
8.
J Am Chem Soc ; 144(27): 12219-12228, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35729777

RESUMO

Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.


Assuntos
Nanoestruturas , Platina , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Homeostase , Peróxido de Hidrogênio , Nanoestruturas/química
9.
Small ; 18(15): e2106094, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224835

RESUMO

This work analyzes the intracellular fate of protein-based nanocarriers along their endolysosomal pathway by means of correlative light and electron microscopy methods. To unambiguously identify the nanocarriers and their degradation remnants in the cellular environment, they are labeled with fluorescent, inorganic nanoplatelets. This allows tracking the nanocarriers on their intracellular pathway by means of electron microscopy imaging. From the present data, it is possible to identify different cell compartments in which the nanocarriers are processed. Finally, three different terminal routes for the intracellular destiny of the nanocarriers are presented. These findings are important to reveal the degradation process of protein nanocapsules and contribute to the understanding of the therapeutic success of an encapsulated drug.


Assuntos
Nanocápsulas , Nanopartículas , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Lisossomos/metabolismo
10.
Angew Chem Int Ed Engl ; 60(34): 18577-18581, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34118104

RESUMO

Calcium oxalate (CaC2 O4 ) is the major component of kidney stone. The acidic osteopontin (OPN) protein in human urine can effectively inhibit the growth of CaC2 O4 crystals, thereby acting as a potent stone preventer. Previous studies in bulk solution all attest to the importance of binding and recognition of OPN at the CaC2 O4 mineral surface, yet molecular level insights into the active interface during CaC2 O4 mineralization are still lacking. Here, we probe the structure of the central OPN fragment and its interaction with Ca2+ and CaC2 O4 at the water-air interface using surface-specific non-linear vibrational spectroscopy. While OPN peptides remain largely disordered in solution, our results reveal that the bidentate binding of Ca2+ ions refold the interfacial peptides into well-ordered and assembled ß-turn motifs. One critical intermediate directs mineralization by releasing structural freedom of backbone and binding side chains. These insights into the mineral interface are crucial for understanding the pathological development of kidney stones and possibly relevant for calcium oxalate biomineralization in general.


Assuntos
Oxalato de Cálcio/metabolismo , Cálculos Renais/metabolismo , Osteopontina/metabolismo , Oxalato de Cálcio/química , Dicroísmo Circular , Humanos , Cálculos Renais/química , Microscopia Eletrônica de Transmissão , Osteopontina/química , Tamanho da Partícula , Espectrofotometria Infravermelho
11.
J Am Chem Soc ; 142(37): 15780-15789, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32812422

RESUMO

Synthetic assembly within living cells represents an innovative way to explore purely chemical tools that can direct and control cellular behavior. We use a simple and modular platform that is broadly accessible and yet incorporates highly intricate molecular recognition, immolative, and rearrangement chemistry. Short bimodular peptide sequences undergo a programmed sequence of events that can be tailored within the living intracellular environment. Each sequential stage of the pathways beginning with the cellular uptake, intracellular transport, and localization imposes distinct structural changes that result in the assembly of fibrillar architectures inside cells. The observation of apoptosis, which is characterized by the binding of Annexin V, demonstrates that programmed cell death can be promoted by the peptide assembly. Higher complexity of the assemblies was also achieved by coassembly of two different sequences, resulting in intrinsically fluorescent architectures. As such, we demonstrate that the in situ construction of architectures within cells will broaden the community's perspective toward how structure formation can impact a living system.


Assuntos
Peptídeos/síntese química , Células A549 , Anexina A5/química , Anexina A5/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Estrutura Molecular , Peptídeos/química , Peptídeos/farmacologia
12.
J Chem Inf Model ; 60(7): 3423-3430, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32584030

RESUMO

Advances in computer-aided translation technology have made tremendous progress in accuracy in the past few years. Chemical Abstracts Service of the American Chemical Society summarizes scientific works from more than 50 languages and allows the users to search papers in nine selected languages. Currently, only the abstracts are rendered into English by human experts or by machine translation because full text translation of millions of articles is beyond the human capacity today. An English translation of a research paper, scientific book, or patent is often required for research, data mining, and for historical purposes from various foreign languages. Many fundamental papers in chemistry, quantum chemistry, physics, and mathematics contain a significant number of chemical or mathematical equations. One of the major known problems in machine translation of such symbolically dense texts is incorrect or meaningless output. This article describes how to optimize the existing machine translation tools to read foreign language papers embedded with chemical/mathematical equations. German and French languages have been selected for illustrative purposes for English translation. Direct upload of text with extensive symbolism is possible with certain services, but this also occasionally produces erroneous rendition into English. A facile solution to the associated problems with embedded equations and mathematical formulas is replacing the equations and notations with "dummy" variables. The placeholder or dummy symbols can be removed after translation, and the original equations are substituted again. This approach, which can be automated in future, relies on the idea that chemical formulas and mathematical notations are universal. Following the guidelines in the article, excellent translations can be produced from a text having interspersed equations and chemical symbols.


Assuntos
Idioma , Tradução , Humanos , Matemática , Processamento de Linguagem Natural , Simbolismo
13.
Nano Lett ; 19(3): 2178-2185, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30810045

RESUMO

Fluorescent nanodiamonds (fNDs) represent an emerging class of nanomaterials offering great opportunities for ultrahigh resolution imaging, sensing and drug delivery applications. Their biocompatibility, exceptional chemical and consistent photostability renders them particularly attractive for correlative light-electron microscopy studies providing unique insights into nanoparticle-cell interactions. Herein, we demonstrate a stringent procedure to image and quantify fNDs with a high contrast down to the single particle level in cells. Individual fNDs were directly visualized by energy-filtered transmission electron microscopy, that is, inside newly forming, early endosomal vesicles during their cellular uptake processes as well as inside cellular organelles such as a mitochondrion. Furthermore, we demonstrate the unequivocal identification, localization, and quantification of individual fNDs in larger fND clusters inside intracellular vesicles. Our studies are of great relevance to obtain quantitative information on nanoparticle trafficking and their various interactions with cells, membranes, and organelles, which will be crucial to design-improved sensors, imaging probes, and nanotherapeutics based on quantitative data.


Assuntos
Meios de Contraste/química , Nanodiamantes/química , Nanoestruturas/administração & dosagem , Rastreamento de Células/métodos , Meios de Contraste/farmacologia , Elétrons , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia Eletrônica , Nanodiamantes/administração & dosagem , Nanodiamantes/ultraestrutura , Nanoestruturas/química , Organelas/efeitos dos fármacos
15.
Small ; 14(27): e1801170, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29847707

RESUMO

Inorganic polyphosphate [polyP] has proven to be a promising physiological biopolymer for potential use in regenerative medicine because of its morphogenetic activity and function as an extracellular energy-donating system. Amorphous Ca2+ -polyP nanoparticles [Ca-polyP-NPs] are characterized by a high zeta potential with -34 mV (at pH 7.4). This should contribute to the stability of suspensions of the spherical nanoparticles (radius 94 nm), but make them less biocompatible. The zeta potential decreases to near zero after exposure of the Ca-polyP-NPs to protein/peptide-containing serum or medium plus serum. Electron microscopy analysis reveals that the particles rapidly change into a coacervate phase. Those mats are amorphous, but less stable than the likewise amorphous Ca-polyP-NPs and are morphogenetically active. Mesenchymal stem cells grown onto the polyP coacervate show enhanced growth/proliferation and become embedded in the coacervate. These results suggest that the Ca-polyP coacervate, formed from Ca-polyP-NPs in the presence of protein, can act as an adaptable framework that mimics a niche and provides metabolic energy in bone/cartilage engineering.


Assuntos
Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Polifosfatos/química , Animais , Humanos , Pirofosfatase Inorgânica/metabolismo , Microscopia Eletrônica , Nanopartículas/ultraestrutura , Medicina Regenerativa
16.
Langmuir ; 34(44): 13375-13386, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30350703

RESUMO

We have investigated the formation of lamellar crystals of poly(vinylidene fluoride) (PVDF) in the presence of oriented clay particles with different aspect ratios (ARs) and surface properties. Hot-melt screw extrusion of PVDF with 5 wt % of montmorillonite (AR ≈ 12) or fluoromica (AR ≈ 27) resulted in formation of phase-separated blends. Replacing the clays with their organoclay derivatives, organomontmorillonite or organofluoromica, resulted in the corresponding intercalated nanocomposites. The organoclays induced formation of polar ß- and γ-polymorphs of PVDF in contrast to the α-polymorph, which dominates in the pure PVDF and the PVDF/clay blends. Solid-state nuclear magnetic resonance revealed that the content of the α-phase in the nanocomposites was never higher than 7% of the total crystalline phase, whereas the ß/γ mass ratio was close to 1:2, irrespective of the AR or crystallization conditions. X-ray diffraction showed that the oriented particles with a larger AR caused orientation of the polar lamellar crystals of PVDF. In the presence of the organofluoromica, PVDF formed a chevron-like lamellar nanostructure, where the polymer chains are extended along the extrusion direction, whereas the lamellar crystals were slanted from normal to the extrusion direction. Time-resolved X-ray diffraction experiments allowed the identification of the formation mechanism of the chevron-like nanostructure.

17.
Inorg Chem ; 57(3): 1259-1268, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29323485

RESUMO

The Magnéli phase V6O11 was synthesized in gram amounts from a powder mixture of V6O11/V7O13 and vanadium metal, using the spark plasma sintering (SPS) technique. Its structure was determined with synchrotron X-ray powder diffraction data from a phase-pure sample synthesized by conventional solid-state synthesis. A special feature of Magnéli-type oxides is a combination of crystallographic shear and intrinsic disorder that leads to relatively low lattice thermal conductivities. SPS prepared V6O11 has a relatively low thermal conductivity of κ = 2.72 ± 0.06 W (m K)-1 while being a n-type conductor with an electrical conductivity of σ = 0.039 ± 0.005 (µΩ m)-1, a Seebeck coefficient of α = -(35 ± 2) µV K-1, which leads to a power factor of PF = 4.9 ± 0.8 × 10-5W (m K2)-1 at ∼600 K. Advances in the application of Magnéli phases are mostly hindered by synthetic and processing challenges, especially when metastable and nanostructured materials such as V6O11 are involved. This study gives insight into the complications of SPS-assisted synthesis of complex oxide materials, provides new information about the thermal and electrical properties of vanadium oxides at high temperatures, and supports the concept of reducing the thermal conductivity of materials with structural building blocks such as crystallographic shear (CS) planes.

18.
J Chem Inf Model ; 58(11): 2214-2223, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30358403

RESUMO

A significant number of published databases and research papers exist in foreign languages and remain untranslated to date. Important sources of primary scientific information in German are Beilstein Handbuch der Organischen Chemie, Gmelin Handbuch der Anorganischen Chemie, Landolt-Börnstein Zahlenwerte und Funktionen, Houben-Weyl Methoden der Organischen Chemie, fundamental research papers, and patents. Although Reaxys has acquired Beilstein and Gmelin, many original references are still in German since 1770s, and the information presented in printed and online versions is often not duplicated. To read these resources, either costly professional translation services are needed or a reading knowledge of German has to be acquired. A convenient approach is to utilize machine translation for reading German texts; however, there is a question of translation reliability. In this work, several different platforms that employ neural network for machine translation (NMT) were tested for translation capability of scientific German. From a preliminary survey, Google Translate and DeepL were finalized for further studies (German to English). Excerpts from German documents spanning more than a century have been carefully chosen from standard works. DeepL Translator and Google Translate were found to be reliable for converting German scientific literature into English for a wide variety of technical passages. As a benchmark, human and machine translations are compared for complex sentences from old literature and a recent publication. Care and intuition should be used before relying on machine translation of methods and directions in general. Reagent addition (to or from) may be inverted in some synthetic procedures using machine translations.


Assuntos
Inteligência Artificial , Tradução , Química , Bases de Dados Factuais , Humanos , Idioma , Física , Editoração , Leitura , Pesquisa , Termodinâmica
19.
Nature ; 491(7425): 541-6, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23135396

RESUMO

Emissions of methane, a potent greenhouse gas, from marine sediments are controlled by anaerobic oxidation of methane coupled primarily to sulphate reduction (AOM). Sulphate-coupled AOM is believed to be mediated by a consortium of methanotrophic archaea (ANME) and sulphate-reducing Deltaproteobacteria but the underlying mechanism has not yet been resolved. Here we show that zero-valent sulphur compounds (S(0)) are formed during AOM through a new pathway for dissimilatory sulphate reduction performed by the methanotrophic archaea. Hence, AOM might not be an obligate syntrophic process but may be carried out by the ANME alone. Furthermore, we show that the produced S(0)--in the form of disulphide--is disproportionated by the Deltaproteobacteria associated with the ANME. Our observations expand the diversity of known microbially mediated sulphur transformations and have significant implications for our understanding of the biogeochemical carbon and sulphur cycles.


Assuntos
Organismos Aquáticos/metabolismo , Archaea/metabolismo , Deltaproteobacteria/metabolismo , Metano/metabolismo , Enxofre/química , Enxofre/metabolismo , Anaerobiose , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Dissulfetos/metabolismo , Sedimentos Geológicos/química , Modelos Biológicos , Oxirredução , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA