Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050585

RESUMO

Staphylococcus epidermidis (S. epidermidis) belongs to methicillin-resistant bacteria strains that cause severe disease in humans. Herein, molecularly imprinted polymer (MIP) nanoparticles resulting from solid-phase synthesis on entire cells were employed as a sensing material to identify the species. MIP nanoparticles revealed spherical shapes with diameters of approximately 70 nm to 200 nm in scanning electron microscopy (SEM), which atomic force microscopy (AFM) confirmed. The interaction between nanoparticles and bacteria was assessed using height image analysis in AFM. Selective binding between MIP nanoparticles and S. epidermidis leads to uneven surfaces on bacteria. The surface roughness of S. epidermidis cells was increased to approximately 6.3 ± 1.2 nm after binding to MIP nanoparticles from around 1 nm in the case of native cells. This binding behavior is selective: when exposing Escherichia coli and Bacillus subtilis to the same MIP nanoparticle solutions, one cannot observe binding. Fluorescence microscopy confirms both sensitivity and selectivity. Hence, the developed MIP nanoparticles are a promising approach to identify (pathogenic) bacteria species.


Assuntos
Impressão Molecular , Nanopartículas , Humanos , Polímeros/química , Impressão Molecular/métodos , Nanopartículas/química , Polímeros Molecularmente Impressos , Microscopia de Força Atômica
2.
Anal Chem ; 94(48): 16692-16700, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36409323

RESUMO

Nanoscale imprinting significantly increases the specific surface area and recognition capabilities of a molecularly imprinted polymer by improving accessibility to analytes, binding kinetics, and template removal. Herein, we present a novel synthetic route for a dual molecularly imprinted polymer (dual-MIP) of the carcinogen oxidative stress biomarkers 3-nitrotyrosine (3-NT) and 4-nitroquinolin-N-oxide (4-NQO) as coatings on graphene quantum-dot capped gold nanoparticles (GQDs-AuNPs). The dual-MIP was successfully coated on the GQDs-AuNPs core via a (3-mercaptopropyl) trimethoxysilane (MPTMS) linkage and copolymerization with the 3-aminopropyltriethoxysilane (APTMS) functional monomer. In addition, we fabricated a facile and compact three-dimensional electrochemical paper-based analytical device (3D-ePAD) for the simultaneous determination of the dual biomarkers using a GQDs-AuNPs@dual-MIP-modified graphene electrode (GQDs-AuNPs@dual-MIP/SPGE). The developed dual-MIP device provides greatly enhanced electrochemical signal amplification due to the improved electrode-specific surface area, electrocatalytic activity, and the inclusion of large numbers of dual-imprinted sites for 3-NT and 4-NQO detection. Quantitative analysis used square wave voltammetry, with an oxidation current appearing at -0.10 V for 4-NQO and +0.78 V for 3-NT. The dual-MIP sensor revealed excellent linear dynamic ranges of 0.01 to 500 µM for 3-NT and 0.005 to 250 µM for 4-NQO, with detection limits in nanomolar levels for both biomarkers. Furthermore, the dual-MIP sensor for the simultaneous determination of 3-NT and 4-NQO provides high accuracy and precision, with no evidence of interference from urine, serum, or whole blood samples.


Assuntos
Grafite , Nanopartículas Metálicas , Impressão Molecular , Ouro , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Carcinógenos , Limite de Detecção , Eletrodos , Biomarcadores , Estresse Oxidativo , Testes Imediatos
3.
Soft Matter ; 18(11): 2245-2251, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234796

RESUMO

Investigations on lithographically formed cavities of surface-imprinted polymers (SIP) can help to gain deeper understanding on cell recognition with SIPs: it is known that surface topography and biomolecules transferred during surface imprinting contribute to cell adhesion. In this work, SIPs synthesized via two different imprinting techniques, namely stamp imprinting and polymerization of Pickering emulsions, were investigated and compared to each other, using atomic force microscopy (AFM) and Peak Force Quantitative Nano Mechanics (PF-QNM). We focused on SIPs based on poly(styrene-co-divinylbenzene) as model polymer and E. coli as model template for cell imprinting. Both imprinting approaches led to cavities that revealed nanostructures within the imprints. Stamp imprinting cavities feature low surface roughness and channel structures that resemble the negative pattern of the bacteria on the stamp and their filaments, while SIPs synthesized via polymerization of Pickering emulsions reveal globular nanostructures accumulating in the imprints. AFM phase imaging and adhesion mapping using PF-QNM show that these globular structures are remainders of the imprinted E. coli cells, most likely lipopolysaccarides, which is not observable in imprints resulting from stamp imprinting.


Assuntos
Impressão Molecular , Polímeros , Escherichia coli , Microscopia de Força Atômica , Impressão Molecular/métodos , Polimerização , Polímeros/química
4.
Anal Bioanal Chem ; 414(1): 731-741, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34950982

RESUMO

Solid-phase synthesis is an elegant way to create molecularly imprinted polymer nanoparticles (nano-MIPs) comprising a single binding site, i.e. mimics of antibodies. When using human serum albumin (HSA) as the template, one achieves nano-MIPs with 53 ± 19 nm diameter, while non-imprinted polymer nanoparticles (nano-NIPs) reach 191 ± 96 nm. Fluorescence assays lead to Stern-Volmer plots revealing selective binding to HSA with selectivity factors of 1.2 compared to bovine serum albumin (BSA), 1.9 for lysozyme, and 4.1 for pepsin. Direct quartz crystal microbalance (QCM) assays confirm these results: nano-MIPs bind to HSA immobilized on QCM surfaces. This opens the way for competitive QCM-based assays for HSA: adding HSA to nanoparticle solutions indeed reduces binding to the QCM surfaces in a concentration-dependent manner. They achieve a limit of detection (LoD) of 80 nM and a limit of quantification (LoQ) of 244 nM. Furthermore, the assay shows recovery rates around 100% for HSA even in the presence of competing analytes.


Assuntos
Impressão Molecular , Técnicas de Microbalança de Cristal de Quartzo , Humanos , Limite de Detecção , Polímeros/química , Albumina Sérica Humana
5.
Anal Bioanal Chem ; 413(24): 6191-6198, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34091710

RESUMO

Graphene oxide-molecularly imprinted polymer composites (GO-MIP) have attracted significant attention as recognition materials in sensing due to their outstanding properties in terms of electrical and thermal conductivity, high mechanical modulus, and the comparably straightforward way to functionalize them. The aim of this study was to design a MIP-based sensor recognition material and enhance its sensitivity by blending it with GO for sensing a harmful dengue hemorrhagic fever pathogen, namely the dengue type 1 virus (DENV-1). Polymer composites comprising GO incorporated to an acrylamide (AAM)/methacrylic acid (MAA)/methyl methacrylate (MMA)/N-vinylpyrrolidone (VP) copolymer were synthesized and compared to the "pure" MIP, i.e., the copolymer without GO. The pure polymer revealed a zeta potential of + 9.9 ± 0.5 mV, whereas GO sheets prepared have a zeta potential of - 60.3 ± 2.7 mV. This results in an overall zeta potential of - 11.2 ± 0.2 mV of the composite. Such polymer composites seem appropriate to bind the positively charged DENV-1 particle (+ 42.2 ± 2.8 mV). GO-MIP coated onto 10-MHz quartz crystal microbalance (QCM) sensors indeed revealed two times sensitivity compared to sensors based on the pure MIP. Furthermore, GO-polymer composites revealed imprinting factors of up to 21, compared to 3 of the pure MIP. When plotting the sensor characteristic in a semilogarithmic way, the composite sensor shows the linear response to DENV-1 in the concentration range from 100 to 103 pfu mL-1. The corresponding limits of detection (S/N = 3) and quantification (S/N = 10) are 0.58 and 1.94 pfu mL-1, respectively. Furthermore, imprinted polymer composites selectively bind DENV-1 without significant interference: DENV-2, DENV-3, DENV-4, respectively, yield 13-16% of DENV-1 signal. The sensor requires only about 15-20 min to obtain a result.


Assuntos
Vírus da Dengue/isolamento & purificação , Grafite/química , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo , Vírus da Dengue/ultraestrutura , Limite de Detecção , Microscopia Eletrônica de Varredura , Propriedades de Superfície
6.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34450992

RESUMO

Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.


Assuntos
Impressão Molecular , Biomimética , Polímeros Molecularmente Impressos , Polímeros
7.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560552

RESUMO

Water quality is one of the most critical indicators of environmental pollution and it affects all of us. Water contamination can be accidental or intentional and the consequences are drastic unless the appropriate measures are adopted on the spot. This review provides a critical assessment of the applicability of various technologies for real-time water quality monitoring, focusing on those that have been reportedly tested in real-life scenarios. Specifically, the performance of sensors based on molecularly imprinted polymers is evaluated in detail, also giving insights into their principle of operation, stability in real on-site applications and mass production options. Such characteristics as sensing range and limit of detection are given for the most promising systems, that were verified outside of laboratory conditions. Then, novel trends of using microwave spectroscopy and chemical materials integration for achieving a higher sensitivity to and selectivity of pollutants in water are described.

8.
Sensors (Basel) ; 19(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126005

RESUMO

Food standards and quality control are important means to ensure public health. In the last decade, melamine has become a rather notorious example of food adulteration: Spiking products with low-cost melamine in order to feign high amino acid content exploits the lack in specificity of the established Kjeldahl method for determining organic nitrogen. This work discusses the responses of a sensor based on quartz crystal microbalances (QCM) coated with molecularly imprinted polymers (MIP) to detect melamine in real life matrices both in a selective and a sensitive manner. Experiments in pure milk revealed no significant sensor responses. However, sensor response increased to a frequency change of -30Hz after diluting the matrix ten times. Systematic evaluation of this effect by experiments in melamine solutions containing bovine serum albumin (BSA) and casein revealed that proteins noticeably influence sensor results. The signal of melamine in water (1600 mg/L) decreases to half of its initial value, if either 1% BSA or casein are present. Higher protein concentrations decrease sensor responses even further. This suggests significant interaction between the analyte and proteins in general. Follow-up experiments revealed that centrifugation of tagged serum samples results in a significant loss of sensor response, thereby further confirming the suspected interaction between protein and melamine.


Assuntos
Leite/química , Impressão Molecular/métodos , Polímeros/química , Triazinas/análise , Animais , Caseínas/química , Bovinos , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Triazinas/química
9.
Anal Bioanal Chem ; 410(3): 875-883, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28664338

RESUMO

Decreased blood level of high-density lipoprotein (HDL) is one of the essential criteria in diagnosing metabolic syndrome associated with the development of atherosclerosis and coronary heart disease. Herein, we report the synthesis of a molecularly imprinted polymer (MIP) that selectively binds HDL, namely, HDL-MIP, and thus serves as an artificial, biomimetic sensor layer. The optimized polymer contains methacrylic acid and N-vinylpyrrolidone in the ratio of 2:3, cross-linked with ethylene glycol dimethacrylate. On 10 MHz dual electrode quartz crystal microbalances (QCM), such HDL-MIP revealed dynamic detection range toward HDL standards in the clinically relevant ranges of 2-250 mg/dL HDL cholesterol (HDL-C) in 10 mM phosphate-buffered saline (PBS, pH = 7.4) without significant interference: low-density lipoprotein (LDL) yields 5% of the HDL signal, and both very-low-density lipoprotein (VLDL) and human serum albumin (HSA) yield 0%. The sensor reveals recovery rates between 94 and 104% at 95% confidence interval with precision of 2.3-7.7% and shows appreciable correlation (R 2 = 0.97) with enzymatic colorimetric assay, the standard in clinical tests. In contrast to the latter, it achieves rapid results (10 min) during one-step analysis without the need for sample preparation. Graphical Abstract ᅟ.


Assuntos
Lipoproteínas HDL/sangue , Metacrilatos/química , Impressão Molecular/métodos , Pirrolidinonas/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Lipoproteínas LDL/sangue , Reprodutibilidade dos Testes
10.
Sensors (Basel) ; 18(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320454

RESUMO

Herein we report novel approaches to the molecular imprinting of proteins utilizing templates sizing around 10 nm and some 100 nm. The first step comprised synthesizing nanoparticles of molecularly imprinted polymers (MIP) towards bovine serum albumin (BSA) and characterizing them according to size and binding capacity. In a second step, they were utilized as templates. Quartz crystal microbalances (QCM) coated with MIP thin films based on BSA MIP nanoparticles lead to a two-fold increase in sensor responses, compared with the case of directly using the protein as the template. This also established that individual BSA molecules exhibit different "epitopes" for molecular imprinting on their outer surfaces. In light of this knowledge, a possible MIP-based biomimetic assay format was tested by exposing QCM coated with BSA MIP thin films to mixtures of BSA and imprinted and non-imprinted polymer (NIP) nanoparticles. At high protein concentrations (1000 ppm) measurements revealed aggregation behavior, i.e., BSA binding MIP NP onto the MIP surface. This increased sensor responses by more than 30% during proof of concept measurements. At lower a BSA concentration (500 ppm), thin films and particles revealed competitive behavior.


Assuntos
Impressão Molecular , Nanopartículas , Polímeros , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina
11.
Nanomedicine ; 13(2): 549-557, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27558351

RESUMO

Dengue fever is a major disease that kills many people in the developing world every year. During early infection, a patient displays a high temperature without other signs. After this stage, and without proper treatment, serious damage to internal organs can happen, which occasionally leads to death. A rapid technique for the early detection of dengue virus (DENV) could reduce the number of fatalities. This study presents a new technique for the detection, classification and antibody screening of DENV based on electrochemical impedance spectroscopy (EIS). We found that the charge transfer resistance (Rct) of a gold electrode coated with graphene oxide reinforced polymer was influenced by virus type and quantity exposed on the surface. Molecular recognition capability established during the GO-polymer composite preparation was used to explain this observation. The linear dependence of Rct versus virus concentrations ranged from 1 to 2×103pfu/mL DENV with a 0.12 pfu/mL detection limit.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue/imunologia , Dengue/diagnóstico , Técnicas Eletroquímicas , Eletrodos , Ouro , Grafite , Humanos , Polímeros
12.
Anal Chem ; 88(2): 1419-25, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26643785

RESUMO

Increased level of low-density lipoprotein (LDL) strongly correlates with incidence of coronary heart disease. We synthesized novel molecularly imprinted polymers (MIP) as biomimetic specific receptors to establish rapid analysis of LDL levels. For that purpose the ratios of monomers acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (VP), respectively, were screened on 10 MHz dual-electrode quartz crystal microbalances (QCM). Mixing MAA and VP in the ratio 3:2 (m/m) revealed linear sensor characteristic to LDL cholesterol (LDL-C) from 4 to 400 mg/dL or 0.10-10.34 mmol/L in 100 mM phosphate-buffered saline (PBS) without significant interference: high-density lipoprotein (HDL) yields 4-6% of the LDL signal, very-low-density-lipoprotein (VLDL) yields 1-3%, and human serum albumin (HSA) yields 0-2%. The LDL-MIP sensor reveals analytical accuracy of 95-96% at the 95% confidence interval with precision at 6-15%, respectively. Human serum diluted 1:2 with PBS buffer was analyzed by LDL-MIP sensors to demonstrate applicability to real-life samples. The sensor responses are excellently correlated to the results of the standard technique, namely, a homogeneous enzymatic assay (R(2) = 0.97). This demonstrates that the system can be successfully applied to human serum samples for determining LDL concentrations.


Assuntos
Dimetilpolisiloxanos/química , Lipoproteínas LDL/sangue , Impressão Molecular , Eletrodos , Humanos , Lipoproteínas LDL/síntese química , Lipoproteínas LDL/química , Albumina Sérica/química
13.
J Sep Sci ; 39(4): 793-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26632078

RESUMO

In the present work, novel molecularly imprinted polymer porous beads for the selective separation of copper ions have been synthesized by combining two material-structuring techniques, namely, molecular imprinting and oil-in-water-in-oil emulsion polymerization. This method produces monodisperse spherical beads with an average diameter of ∼2-3 mm, in contrast to adsorbents produced in the traditional way of grinding and sieving. Field-emission scanning electron microscopy indicates that the beads are porous in nature with interconnected pores of about 25-50 µm. Brunner-Emmett-Teller analysis shows that the ion-imprinted beads possess a high surface area (8.05 m(2) /g), and the total pore volume is determined to be 0.00823 cm(3) /g. As a result of the highly porous nature and ion-imprinting, the beads exhibit a superior adsorption capacity (84 mg/g) towards copper than the non-imprinted material (22 mg/g). Furthermore, selectivity studies indicate that imprinted beads show splendid recognizing ability, that is, nearly fourfold greater selective binding for Cu(2+) in comparison to the other bivalent ions such as Mn(2+) , Ni(2+) , Co(2+) , and Ca(2+) . The imprinted composite beads prepared in this study possess uniform porous morphology and may open up new possibilities for the selective removal of copper ions from waste water/contaminated matrices.

14.
Sensors (Basel) ; 16(7)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27376287

RESUMO

Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity.

15.
Anal Chem ; 86(3): 1679-86, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24392724

RESUMO

A complex prepolymerized film comprising monomers, cross-linkers, and initiator is usually used to create molecularly imprinted polymers. We herein exploit ready-to-use resist materials and link molecular surface imprinting with UV- and thermo-nanoimprinting techniques to create a sensor layer for the specific recognition of the bacterial surface markers lipopolysaccharide (LPS) and lipoteichoic acid (LTA). To account for the highly polar moieties of LPS and LTA, we evaluate different resist and stamp materials of distinct surface properties by AFM and molecularly imprinted sorbent assays. Thermo nanoimprinting of LPS and LTA micelles to Epon 1002F films exhibits excellent sensitivity of up to 13 times increased signals compared to those of the nonimprinted films and negligible cross-reaction with the tested nonspecific analyte. Additionally, the sensitivity and selectivity of the thermo nanoimprints is compared to conventional molecular surface imprints using a cocktail of acrylic monomers in QCM measurements.


Assuntos
Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Lipopolissacarídeos/análise , Impressão Molecular , Nanotecnologia/métodos , Ácidos Teicoicos/análise , Temperatura , Materiais Biomiméticos/química , Lipopolissacarídeos/química , Micelas , Sondas Moleculares/química , Polímeros/química , Propriedades de Superfície , Ácidos Teicoicos/química
16.
Talanta ; 269: 125512, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091737

RESUMO

Measuring the levels of the biomarkers vanillylmandelic acid (VMA) and 5-Hydroxyindole-3-acetic acid (5-HIAA) is a valuable tool for clinical diagnosis not only of neuroblastoma or carcinoid syndrome, but also of essential hypertension, depression, migraine, and Tourette's syndrome. Herein, we explore using graphene quantum dots (GQDs) coated with molecularly imprinted polymer (MIP) as novel dual-imprinted sensors for selective and simultaneous determination of VMA and 5-HIAA in urine and plasma samples. The dual-MIP was successfully coated on the GQDs core via co-polymerization of (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), acting as functional and cross-linking monomers, respectively. In addition, we successfully created the dual imprinted VMA and 5-HIAA shell on the GQDs' core via a one-pot synthesis. We fabricated a facile and ready-to-use Origami three-dimensional electrochemical paper-based analytical device (Origami 3D-ePAD) for simultaneous determination of VMA and 5-HIAA using a GQDs@dual-MIP modified graphene electrode (GQDs@dual-MIP/SPGE). The Origami 3D-ePAD was designed to form a voltammetric cell on a three-layer foldable sheet with several advantages. For example, they were quickly assembled and enhanced the device's physical durability with the hydrophobic backup sheet. The developed dual imprinted Origami 3D-ePAD leads to substantially enhanced sensitivity and selectivity to electrochemical signal amplification generated from increasing the electrode-specific surface area, electrocatalytic activity, and the large numbers of dual imprinted sites for VMA and 5-HIAA detection. The synthetic recognition sites are highly selective for 5-HIAA and VMA molecules with an imprinting factor of 8.46 and 7.10, respectively. Quantitative analysis relying on square wave voltammetry reveals excellent linear dynamic ranges of around 0.001-25 µM, with detection limits of 0.023 nM for 5-HIAA and 0.047 nM for VMA (3Sb, n = 3). The Origami 3D-ePAD provides high accuracy and precision (i.e., recovery values of 5-HIAA ranged from 82.98 to 98.40 %, and VMA ranged from 83.28 to 104.39 %), and RSD less than 4.37 %) in urine and plasma samples without any evidence of interference. Hence, it is well suited as a facile and ready-to-use disposable device for point-of-care testing. It is straightforward, cost-effective, reproducible, and stable. Furthermore, it allows for rapid analysis (analysis time ∼20s) useful in medical diagnosis and other relevant fields.


Assuntos
Tumor Carcinoide , Grafite , Impressão Molecular , Pontos Quânticos , Humanos , Pontos Quânticos/química , Polímeros Molecularmente Impressos , Grafite/química , Ácido Vanilmandélico , Biomarcadores Tumorais , Limite de Detecção , Ácido Hidroxi-Indolacético , Acetatos , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos
18.
Anal Bioanal Chem ; 405(20): 6471-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23715677

RESUMO

N-Acetylglucosamine (GlcNAc) is a natural ligand that interacts with the binding sites of wheat germ agglutinin (WGA) lectin. For immobilization, GlcNAc was linked to p-nitrophenol, and the nitro group was reduced and then bound to cysteine via two-step synthesis. Scanning tunneling microscopy studies revealed proper immobilization of the ligand on the gold surface of a quartz crystal microbalance (QCM) via the cysteine S-H bond as well as binding between GlcNAc and WGA. QCM measurements revealed that maximum sensitivity towards WGA can only be achieved when co-immobilizing one part ligand and 5,000 parts cysteine for steric reasons, because it allows binding of a protein monolayer on the surface. Langmuir-type treatment of the binding isotherm suggests two different binding ranges for WGA and the GlcNAc monolayer, because at concentrations of WGA below 1 µm the Gibbs energy for the binding process is one third higher than that at concentrations above this value. The same systems can be transferred to first proof-of-concept measurements with different strains of influenza A virus (H5N3, H5N1, H1N3) because GlcNAc is part of the oligosaccharide ligand responsible for the first binding step. Thus, it constitutes both a suitable tool for rapid analysis and the basis for future theoretical calculations of ligand-virus interactions.


Assuntos
Técnicas Biossensoriais/instrumentação , Glucosamina/química , Orthomyxoviridae/química , Lectinas de Plantas/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Técnicas Biossensoriais/métodos
19.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837379

RESUMO

An airplane is statistically struck by lightning every year. The need for lightweight aircraft to reduce the production of carbon dioxide has significantly reduced the presence of metals in favour of composites, resulting in lower lightning strike protection efficiency. In this perspective, we critically review the state of technologies in lightning strike protection solutions based on carbon materials, graphene, and MXenes. Furthermore, we comment on possible future research directions in the field.

20.
Talanta ; 254: 124199, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549138

RESUMO

Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular diseases. Here, we created a simple colorimetric assay for sensitive and specific determination of oxLDL using a selective aptamer coupled with salt-induced gold nanoparticle (AuNP) aggregation. The aptamer was chosen by Systematic Evolution of Ligands by Exponential Enrichment to obtain a novel selective sequence towards oxLDL (as 5'-CCATCACGGGGCAGGCGGACAAGGGGTAAGGGCCACATCA-3'). Mixing a 5 µM aptamer solution with an aliquot of a sample containing oxLDL followed by adding AuNP solution (OD = 1) and 80 mmol L-1 NaCl achieved rapid results within 19 min: linear response to oxLDL from 0.002 to 0.5 µmol L-1 with high selectivity, a recovery accuracy of 100-111% at the 95% confidence interval, and within-run and between-run precision of 1-6% and 1-5% coefficient variations, respectively. Artificial serum diluted at least 1:8 with distilled water, analyzed by the aptamer-based colorimetric assay, showed excellent correlation with conventional thiobarbituric acid reactive substances (TBARS) (R2 = 0.9792) as a rapid colorimetric method without the need for sample preparation other than dilution.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Colorimetria/métodos , Técnicas Biossensoriais/métodos , Lipoproteínas LDL , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA