Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852912

RESUMO

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Neuroproteção , Proteínas tau/metabolismo , Acetilação , Doença de Alzheimer/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Linhagem Celular , Diflunisal/uso terapêutico , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Salicilatos/uso terapêutico , Sirtuína 1/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas tau/sangue
2.
Proc Natl Acad Sci U S A ; 120(52): e2306090120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117854

RESUMO

The sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal antinociceptive effect is approximately 24 h following dosing. We sought to understand this unique antineuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout mice for Tmem97, we find that a σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce antinociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.


Assuntos
Neuralgia , Masculino , Feminino , Humanos , Camundongos , Animais , Ligantes , Neuralgia/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Brain ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662784

RESUMO

Mutations in the SLC1A4 transporter lead to neurodevelopmental impairments, spastic tetraplegia, thin corpus callosum, and microcephaly in children. SLC1A4 catalyzes obligatory amino acid exchange between neutral amino acids, but the physiopathology of SLC1A4 disease mutations and progressive microcephaly remain unclear. Here, we examined the phenotype and metabolic profile of three Slc1a4 mouse models, including a constitutive Slc1a4-KO mouse, a knock-in mouse with the major human Slc1a4 mutation (Slc1a4-K256E), and a selective knockout of Slc1a4 in brain endothelial cells (Slc1a4tie2-cre). We show that Slc1a4 is a bona fide L-serine transporter at the BBB and that acute inhibition or deletion of Slc1a4 leads to a decrease in serine influx into the brain. This results in microcephaly associated with decreased L-serine content in the brain, accumulation of atypical and cytotoxic 1-deoxysphingolipids in the brain, neurodegeneration, synaptic and mitochondrial abnormalities, and behavioral impairments. Prenatal and early postnatal oral administration of L-serine at levels that replenish the serine pool in the brain rescued the observed biochemical and behavioral changes. Administration of L-serine till the second postnatal week also normalized brain weight in Slc1a4-E256 K mice. Our observations suggest that the transport of "non-essential" amino acids from the blood through the BBB is at least as important as that of essential amino acids for brain metabolism and development. We proposed that SLC1A4 mutations cause a BBB aminoacidopathy with deficits in serine import across the BBB required for optimal brain growth and leads to a metabolic microcephaly, which may be amenable to treatment with L-serine.

4.
Amino Acids ; 55(11): 1501-1517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37833512

RESUMO

Bridging the gap between preclinical models of neurological and psychiatric disorders with their human manifestations is necessary to understand their underlying mechanisms, identify biomarkers, and develop novel therapeutics. Cognitive and social impairments underlie multiple neuropsychiatric and neurological disorders and are often comorbid with sleep disturbances, which can exacerbate poor outcomes. Importantly, many symptoms are conserved between vertebrates and invertebrates, although they may have subtle differences. Therefore, it is essential to determine the molecular mechanisms underlying these behaviors across different species and their translatability to humans. Genome-wide association studies have indicated an association between glutamatergic gene variants and both the risk and frequency of psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. For example, changes in glutamatergic neurotransmission, such as glutamate receptor subtype N-methyl-D-aspartate receptor (NMDAR) hypofunction, have been shown to contribute to the pathophysiology of schizophrenia. Furthermore, in neurological disorders, such as traumatic brain injury and Alzheimer's disease, hyperactivation of NMDARs leads to synaptic damage. In addition to glutamate binding, NMDARs require the binding of a co-agonist D-serine or glycine to the GluN1 subunit to open. D-serine, which is racemized from L-serine by the neuronal enzyme serine racemase (SRR), and both SRR and D-serine are enriched in cortico-limbic brain regions. D-serine is critical for complex behaviors, such as cognition and social behavior, where dysregulation of its synthesis and release has been implicated in many pathological conditions. In this review, we explore the role of D-serine in behaviors that are translationally relevant to multiple psychiatric and neurological disorders in different models across species.


Assuntos
Transtorno do Espectro Autista , Doenças do Sistema Nervoso , Animais , Humanos , Serina/metabolismo , Estudo de Associação Genômica Ampla , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Racemases e Epimerases
5.
Glia ; 70(6): 1133-1152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35195906

RESUMO

Synaptic damage is one of the most prevalent pathophysiological responses to traumatic CNS injury and underlies much of the associated cognitive dysfunction; however, it is poorly understood. The D-amino acid, D-serine, serves as the primary co-agonist at synaptic NMDA receptors (NDMARs) and is a critical mediator of NMDAR-dependent transmission and synaptic plasticity. In physiological conditions, D-serine is produced and released by neurons from the enzymatic conversion of L-serine by serine racemase (SRR). However, under inflammatory conditions, glial cells become a major source of D-serine. Here, we report that D-serine synthesized by reactive glia plays a critical role in synaptic damage after traumatic brain injury (TBI) and identify the therapeutic potential of inhibiting glial D-serine release though the transporter Slc1a4 (ASCT1). Furthermore, using cell-specific genetic strategies and pharmacology, we demonstrate that TBI-induced synaptic damage and memory impairment requires D-serine synthesis and release from both reactive astrocytes and microglia. Analysis of the murine cortex and acutely resected human TBI brain also show increased SRR and Slc1a4 levels. Together, these findings support a novel role for glial D-serine in acute pathological dysfunction following brain trauma, whereby these reactive cells provide the excess co-agonist levels necessary to initiate NMDAR-mediated synaptic damage.


Assuntos
Lesões Encefálicas , Serina , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/metabolismo , Lesões Encefálicas/tratamento farmacológico , Humanos , Camundongos , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
6.
Neurobiol Dis ; 94: 73-84, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27317833

RESUMO

Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by >50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3(-/-) mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Receptor EphB3/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Animais , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos Knockout , Neurônios/metabolismo , Transdução de Sinais/fisiologia
7.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645091

RESUMO

Traumatic spinal cord injury (SCI) is a devastating condition that impacts over 300,000 individuals in the US alone. Depending on the severity of the injury, SCI can lead to varying degrees of sensorimotor deficits and paralysis. Despite advances in our understanding of the underlying pathological mechanisms of SCI and the identification of promising molecular targets for repair and functional restoration, few therapies have made it into clinical use. To improve the success rate of clinical translation, more robust, sensitive, and reproducible means of functional assessment are required. The gold standards for the evaluation of locomotion in rodents with SCI are the Basso Beattie Bresnahan (BBB) and Basso Mouse Scale (BMS) tests. To overcome the shortcomings of current methods, we developed two separate marker-less kinematic analysis paradigms in mice, MotorBox and MotoRater, based on deep-learning algorithms generated with the DeepLabCut open-source toolbox. The MotorBox system uses an originally designed, custom-made chamber, and the MotoRater system was implemented on a commercially available MotoRater device. We validated the MotorBox and MotoRater systems by comparing them with the traditional BMS test and extracted metrics of movement and gait that can provide an accurate and sensitive representation of mouse locomotor function post-injury, while eliminating investigator bias and variability. The integration of MotorBox and/or MotoRater assessments with BMS scoring will provide a much wider range of information on specific aspects of locomotion, ensuring the accuracy, rigor, and reproducibility of behavioral outcomes after SCI. Highlights: MotorBox and MotoRater systems are two novel marker-less kinematic analysis paradigms in mice, based on deep-learning algorithms generated with DeepLabCut.MotorBox and MotoRater systems are highly sensitive, accurate and unbiased in analyzing locomotor behavior in mice.MotorBox and MotoRater systems allow for sensitive detection of SCI-induced changes in movement metrics, including range of motion, gait, coordination, and speed.MotorBox and MotoRater systems allow for detection of movement metrics not measurable with the BMS.

8.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866499

RESUMO

Previous studies have shown that ligands that bind to sigma-2 receptor/TMEM97 (s2R/TMEM97), a transmembrane protein, have anxiolytic/antidepressant-like properties and relieve neuropathic pain-like effects in rodents. Despite medical interest in s2R/TMEM97, little affective and pain behavioral characterization has been done using transgenic mice, which limits the development of s2R/TMEM97 as a viable therapeutic target. Using wild-type (WT) and global Tmem97 knock-out (KO) mice, we sought to identify the contribution of Tmem97 in modulating affective and pain-like behaviors using a battery of affective and pain assays, including open field, light/dark preference, elevated plus maze, forced swim test, tail suspension test, and the mechanical sensitivity tests. Our results demonstrate that female Tmem97 KO mice show less anxiety-like and depressive-like behaviors in light/dark preference and tail suspension tests but not in an open field, elevated plus maze, and forced swim tests at baseline. We next performed spared nerve injury in WT and Tmem97 KO mice to assess the role of Tmem97 in neuropathic pain-induced anxiety and depression. WT mice, but not Tmem97 KO mice, developed a prolonged neuropathic pain-induced depressive-like phenotype when tested 10 weeks after nerve injury in females. Our results show that Tmem97 plays a role in modulating anxiety-like and depressive-like behaviors in naive animals with a significant change in the presence of nerve injury in female mice. Overall, these data demonstrate that Tmem97 could be a target to alleviate affective comorbidities of pain disorders.


Assuntos
Depressão , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia , Receptores sigma , Animais , Receptores sigma/metabolismo , Feminino , Neuralgia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Depressão/metabolismo , Depressão/etiologia , Comportamento Animal/fisiologia , Camundongos , Ansiedade/metabolismo , Modelos Animais de Doenças , Masculino
9.
J Neurosci Res ; 91(6): 828-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23553703

RESUMO

Spinal cord injury results in irreversible paralysis, axonal injury, widespread oligodendrocyte death, and white matter damage. Although the mechanisms underlying these phenomena are poorly understood, previous studies from our laboratory indicate that inhibiting activation of the nuclear factor-κB transcription factor in astrocytes reduces white matter damage and improves functional recovery following spinal cord injury. In the current study, we demonstrate that activation of the nuclear factor-κB transcription factor within astrocytes results in a significant increase in oligodendrocyte death following trauma by reducing extracellular zinc levels and inducing glutamate excitotoxicity. By using an ionotropic glutamate receptor antagonist (CNQX), we show that astroglial nuclear factor-κB-mediated oligodendrocyte death is dependent on glutamate signaling despite no change in extracellular glutamate concentrations. Further analysis demonstrated a reduction in levels of extracellular zinc in astrocyte cultures with functional nuclear factor-κB signaling following trauma. Cotreatment of oligodendrocytes with glutamate and zinc showed a significant increase in oligodendrocyte toxicity under low-zinc conditions, suggesting that the presence of zinc at specific concentrations can prevent glutamate excitotoxicity. These studies demonstrate a novel role for zinc in regulating oligodendrocyte excitotoxicity and identify new therapeutic targets to prevent oligodendrocyte cell death in central nervous system trauma and disease.


Assuntos
Morte Celular/fisiologia , Líquido Extracelular/química , Oligodendroglia/metabolismo , Traumatismos da Medula Espinal/metabolismo , Zinco/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Oligodendroglia/patologia , Traumatismos da Medula Espinal/patologia
10.
Cell Death Differ ; 30(2): 397-406, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456775

RESUMO

Hallmark pathological features of brain trauma are axonal degeneration and demyelination because myelin-producing oligodendrocytes (OLs) are particularly vulnerable to injury-induced death signals. To reveal mechanisms responsible for this OL loss, we examined a novel class of "death receptors" called dependence receptors (DepRs). DepRs initiate pro-death signals in the absence of their respective ligand(s), yet little is known about their role after injury. Here, we investigated whether the deleted in colorectal cancer (DCC) DepR contributes to OL loss after brain injury. We found that administration of its netrin-1 ligand is sufficient to block OL cell death. We also show that upon acute injury, DCC is upregulated while netrin-1 is downregulated in perilesional tissues. Moreover, after genetically silencing pro-death activity using DCCD1290N mutant mice, we observed greater OL survival, greater myelin integrity, and improved motor function. Our findings uncover a novel role for the netrin-1/DCC pathway in regulating OL loss in the traumatically injured brain.


Assuntos
Lesões Encefálicas , Receptor DCC , Netrina-1 , Proteínas Supressoras de Tumor , Animais , Camundongos , Morte Celular , Receptor DCC/metabolismo , Ligantes , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1/metabolismo , Netrinas , Oligodendroglia/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37090527

RESUMO

The Sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal anti-nociceptive effect is approximately 24 hours following dosing. We sought to understand this unique anti-neuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout (KO) mice for Tmem97, we find that a new σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce anti-nociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion (DRG) neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.

12.
Glia ; 60(4): 639-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22275133

RESUMO

Schwann cells (SCs) are crucial for peripheral nerve development and regeneration; however, the intrinsic regulatory mechanisms governing postinjury responses are poorly understood. Activation and deacetylation of nuclear factor-κB (NF- κB) in SCs have been implicated as prerequisites for peripheral nerve myelination. Using GFAP-IκBα-dn mice in which NF- κB transcriptional activation is inhibited in SCs, we found no discernable differences in the quantity or structure of myelinated axons in adult facial nerves. Following crush injury, axonal regeneration was impaired at 31 days and significantly enhanced at 65 days in transgenic animals. Compact remyelination and Remak bundle organization were significantly compromised at 31 days and restored by 65 days post injury. Together, these data indicate that inhibition of NF-κB activation in SCs transiently delays axonal regeneration and compact remyelination. Manipulating the temporal activation of nuclear factor-κB in Schwann cells may offer new therapeutic avenues for PNS and CNS regeneration.


Assuntos
Proteínas I-kappa B/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Degeneração Walleriana/patologia , Análise de Variância , Animais , Axotomia/métodos , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Traumatismos do Nervo Facial/complicações , Traumatismos do Nervo Facial/etiologia , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas I-kappa B/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios Motores/patologia , Proteína P0 da Mielina/metabolismo , Inibidor de NF-kappaB alfa , Proteínas de Neurofilamentos/metabolismo , Tempo de Reação/genética , Recuperação de Função Fisiológica/genética , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Estilbamidinas , Fatores de Tempo , Degeneração Walleriana/etiologia
13.
Sci Rep ; 12(1): 20753, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456686

RESUMO

The sigma 2 receptor (σ2R) was recently identified as an endoplasmic reticulum (ER) membrane protein known as transmembrane protein 97 (TMEM97). Studies have shown that σ2R/TMEM97 binding compounds are neuroprotective, suggesting a role of σ2R/TMEM97 in neurodegenerative processes. To understand the function of σ2R/TMEM97 in neurodegeneration pathways, we characterized ischemia-induced retinal ganglion cell (RGC) degeneration in TMEM97-/- mice and found that RGCs in TMEM97-/- mice are resistant to degeneration. In addition, intravitreal injection of a selective σ2R/TMEM97 ligand DKR-1677 significantly protects RGCs from ischemia-induced degeneration in wildtype mice. Our results provide conclusive evidence that σ2R/TMEM97 plays a role to facilitate RGC death following ischemic injury and that inhibiting the function of σ2R/TMEM97 is neuroprotective. This work is a breakthrough toward elucidating the biology and function of σ2R/TMEM97 in RGCs and likely in other σ2R/TMEM97 expressing neurons. Moreover, these findings support future studies to develop new neuroprotective approaches for RGC degenerative diseases by inhibiting σ2R/TMEM97.


Assuntos
Neuroproteção , Células Ganglionares da Retina , Animais , Camundongos , Retículo Endoplasmático , Injeções Intravítreas
14.
J Neurosci ; 30(47): 16015-24, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21106840

RESUMO

There is growing evidence that astrocytes play critical roles in neuron-glial interactions at the synapse. Astrocytes are believed to regulate presynaptic and postsynaptic structures and functions, in part, by the release of gliotransmitters such as glutamate, ATP, and d-serine; however, little is known of how neurons and astrocytes communicate to regulate these processes. Here, we investigated a family of transmembrane proteins called ephrinBs and Eph receptors that are expressed in the synapse and are known to regulate synaptic transmission and plasticity. In addition to their presence on CA1 hippocampal neurons, we determined that ephrins and Eph receptors are also expressed on hippocampal astrocytes. Stimulation of hippocampal astrocytes with soluble ephrinB3, known to be expressed on CA1 postsynaptic dendrites, enhanced d-serine synthesis and release in culture. Conversely, ephrinB3 had no effect on d-serine release from astrocytes deficient in EphB3 and EphA4, which are the primary receptors for ephrinB3. Eph receptors mediate this response through interactions with PICK1 (protein interacting with C-kinase) and by dephosphorylating protein kinase C α to activate the conversion of l-serine to d-serine by serine racemase. These findings are supported in vivo, where reduced d-serine levels and synaptic transmissions are observed in the absence of EphB3 and EphA4. These data support a role for ephrins and Eph receptors in regulating astrocyte gliotransmitters, which may have important implications on synaptic transmission and plasticity.


Assuntos
Astrócitos/metabolismo , Efrina-B3/fisiologia , Serina/biossíntese , Serina/metabolismo , Animais , Células Cultivadas , Efrina-B3/deficiência , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/genética , Biossíntese de Proteínas/genética , Receptor EphA4/biossíntese , Receptor EphA4/deficiência , Receptor EphA4/fisiologia , Serina/análogos & derivados , Estereoisomerismo , Transmissão Sináptica/genética
15.
Stem Cells ; 28(7): 1231-42, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20496368

RESUMO

Ephrins and Eph receptor(s) have recently been implicated in regulating neurogenesis in the adult subventricular zone (SVZ) and rostral migratory stream. Here, we examined the role of ephrinB3-EphB3 signaling in mediating the SVZ response to traumatic brain injury (TBI). Analysis of EphB3 expression showed colocalization with glial fibrillary acidic protein-positive neural stem progenitor cells (NSPCs) and doublecortin-positive neuroblasts, whereas ephrinB3 was expressed outside the neurogenic region. TBI resulted in a significant reduction in EphB3 expression, which coincided with enhanced NSPC survival and proliferation at 3 and 7 days postinjury. Analysis of mice lacking either ephrinB3 (ephrinB3(-/-)) or EphB3 (EphB3(-/-)) showed a significant increase in bromodeoxyuridine (BrdU) incorporation and Ki67 immunoreactivity in the SVZ. Interestingly, cell death was dissimilar between knockout mice, where cell death was reduced in EphB3(-/-) but increased in ephrinB3(-/-) mice. Lateral ventricle infusion of soluble preclustered ephrinB3-Fc reversed the proliferative and cell death defects in ephrinB3(-/-) but not EphB3(-/-) mice and prevented TBI-induced proliferation in wild-type NSPCs. Coincidently, tumor suppressor p53 expression was increased following EphB3 stimulation and is reduced in the absence of either EphB3 or ephrinB3. Furthermore, pharmacological inhibition and siRNA knockdown of p53-attenuated ephrinB3-Fc-mediated growth suppression while having no effect on cell death in cultured NSPCs. These data demonstrate that EphB3 signaling suppresses NSPC proliferation in a p53-dependent manner, induces cell death in the absence of ligand stimulation and is transiently reduced in the SVZ to initiate the expansion and survival of endogenous adult NSPCs following TBI.


Assuntos
Lesões Encefálicas/metabolismo , Ventrículos Cerebrais/metabolismo , Homeostase , Neurônios/metabolismo , Receptor EphB3/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Envelhecimento , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Proliferação de Células , Células Cultivadas , Ventrículos Cerebrais/citologia , Efrina-B3/deficiência , Efrina-B3/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , RNA Interferente Pequeno/genética , Receptor EphB3/deficiência , Células-Tronco/citologia , Proteína Supressora de Tumor p53/genética
16.
Biochim Biophys Acta ; 1793(2): 231-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18948148

RESUMO

Eph receptors have been implicated in regulating a diverse array of cellular functions in the developing nervous system. Recently, Eph receptors have been shown to promote cell death in adult germinal zones; however, their mechanisms of action remain ill-defined. In this study, we demonstrate that EphA4 is a new member of the dependence receptors family, which can initiate cell death in the absence of its ligand ephrinB3. Upon removal of its ligand, EphA4 triggers cell death that is dependent on caspase activation as caspase inhibitors prevent cell death. EphA4 itself is cleaved by caspase-3-like caspase in the intracellular domain at position D773/774, which is necessary for cell death initiation as mutation of the cleavage site abolishes apoptosis. In the adult subventricular zone, abolishing ephrinB3 results in increased cell death, while the absence of EphA4 results in excessive numbers of neuroblasts. Furthermore, infusion of soluble ephrinB3 into the lateral ventricle reduced cell death, and together these results support a dependence role for EphA4 in adult neurogenesis.


Assuntos
Apoptose/efeitos dos fármacos , Efrina-B3/farmacologia , Neurogênese/efeitos dos fármacos , Receptor EphA4/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/enzimologia , Ventrículos Cerebrais/patologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligantes , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Especificidade por Substrato/efeitos dos fármacos
17.
Brain Commun ; 2(2): fcaa175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33305261

RESUMO

Clinical trials examining neuroprotective strategies after brain injury, including those targeting cell death mechanisms, have been underwhelming. This may be in part due to an incomplete understanding of the signalling mechanisms that induce cell death after traumatic brain injury. The recent identification of a new family of death receptors that initiate pro-cell death signals in the absence of their ligand, called dependence receptors, provides new insight into the factors that contribute to brain injury. Here, we show that blocking the dependence receptor signalling of EphB3 improves oligodendrocyte cell survival in a murine controlled cortical impact injury model, which leads to improved myelin sparing, axonal conductance and behavioural recovery. EphB3 also functions as a cysteine-aspartic protease substrate, where the recruitment of injury-dependent adaptor protein Dral/FHL-2 together with capsase-8 or -9 leads to EphB3 cleavage to initiate cell death signals in murine and human traumatic brain-injured patients, supporting a conserved mechanism of cell death. These pro-apoptotic responses can be blocked via exogenous ephrinB3 ligand administration leading to improved oligodendrocyte survival. In short, our findings identify a novel mechanism of oligodendrocyte cell death in the traumatically injured brain that may reflect an important neuroprotective strategy in patients.

18.
J Neurosci ; 28(48): 12901-12, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036984

RESUMO

It is becoming increasingly clear that brain injuries from a variety of causes stimulate neurogenesis within the hippocampus. It remains unclear, however, how robust this response may be and what primary cell types are involved. Here, using a controlled cortical impact model of traumatic brain injury on a previously characterized transgenic mouse line that expresses enhanced green fluorescent protein (eGFP) under the control of the nestin promoter, we demonstrate that it is the earliest type-1 quiescent progenitor cells that are induced to proliferate and migrate outside the subgranular layer of the dentate gyrus. This type-1 cell activation occurs at the same time that we observe adjacent but more differentiated doublecortin-expressing progenitors (type-2 cells) being eliminated. Also, although type-2 cells remain intact in the contralateral (uninjured) dentate gyrus, the type-1 cells there are also activated and result in increased numbers of the doublecortin-expressing type-2 cells. In addition, we have generated a novel mouse transgenic that expresses a modified version of the herpes simplex virus thymidine kinase along with eGFP that allows for the visualization and inducible ablation of early dividing progenitors by exposing them to ganciclovir. Using this transgenic in the context of traumatic brain injury, we demonstrate that these early progenitors are required for injury-induced remodeling to occur. This work suggests that injury-induced hippocampal remodeling following brain injury likely requires sustained activation of quiescent early progenitors.


Assuntos
Lesões Encefálicas/metabolismo , Hipocampo/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Antivirais/farmacologia , Biomarcadores/análise , Biomarcadores/metabolismo , Lesões Encefálicas/fisiopatologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Ganciclovir/farmacologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Regeneração Nervosa/genética , Nestina , Plasticidade Neuronal/genética , Neuropeptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Células-Tronco/citologia , Timidina Quinase/metabolismo
19.
Exp Neurol ; 312: 51-62, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471251

RESUMO

It was previously reported that a tube holding chitosan carriers loaded with neurotrophin-3 (NT-3), after insertion into a 5 mm long transection gap in the adult rat spinal cord, triggered de novo neural tissue generation and functional recovery. Here, we report an effort to validate these findings using stringent blinding methodologies, which are crucial for robustness in reproducing biomedical studies. Radio frequency identification (RFID) chips were utilized to label rats that were randomly assigned into three experimental groups: transection with chitosan-NT-3 implant (C-NT3), transection only (T-controls), and laminectomy only (S-controls), blinding the experimenters to the treatments. Three months after surgery, animals only known by their RFID were functionally, electrophysiologically, and anatomically assessed. The data were then collected into the proper groups and statistically analyzed. Neural tissue with nestin-, Tuj1-, and NeuN-positive cells was found bridging the transection gap in C-NT3 rats, but not in T-controls. Motor- and somatosensory-evoked potentials were detected in C-NT3 rats and S-controls, but not in T-controls. Hind limb movement was significantly better in C-NT3 rats compared with T-controls. Our validation study indicates that C-NT3 implants facilitate neural tissue generation, at least in part, by eliciting endogenous neurogenesis. Our data support the use of C-NT3 implants for tissue remodeling in the injured spinal cord.


Assuntos
Quitosana/administração & dosagem , Regeneração Nervosa/fisiologia , Neurotrofina 3/administração & dosagem , Índice de Gravidade de Doença , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Quitosana/metabolismo , Implantes de Medicamento/administração & dosagem , Feminino , Regeneração Nervosa/efeitos dos fármacos , Neurotrofina 3/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
20.
Nat Commun ; 10(1): 3028, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292434

RESUMO

Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications.


Assuntos
Ataxia Cerebelar/genética , Córtex Cerebelar/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Caseína Quinase Idelta , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Ataxia Cerebelar/patologia , Córtex Cerebelar/citologia , Córtex Cerebelar/patologia , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Proteínas Nucleares/genética , Fosforilação/fisiologia , Cultura Primária de Células , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA