Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sex Plant Reprod ; 24(3): 189-98, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21107610

RESUMO

Hybrid aspen (Populus tremula × P. tremuloides) belong to the section Populus. Eastern cottonwood (P. deltoides) is a member of the section Aigeiros within the genus Populus. These poplar sections are generally considered to be incompatible. Here, we describe successful hybridisation between these parents, producing an offspring family with 27 individuals. The hybrid character of individuals was proven by genotypes at 16 nuclear microsatellite loci. One individual was suspected to have more than the diploid chromosome number of 2n = 38 due to the observation of more than two alleles at several loci. This individual is a triploid, ascertained by flow cytometry. Two distinct growth classes of tall and dwarf plants were observed in the progeny, reflecting different degrees of postzygotic incompatibility. Two loci linked to the tested microsatellites have an effect on height growth. Some fast-growing individuals were micropropagated to test them for biomass performance together with other clones in field trials.


Assuntos
Hibridização Genética , Populus/genética , Genótipo , Ploidias , Populus/crescimento & desenvolvimento
2.
Ecol Evol ; 11(12): 7796-7809, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188852

RESUMO

Oaks (Quercus) are major components of temperate forest ecosystems in the Northern Hemisphere where they form intermediate or climax communities. Sessile oak (Quercus petraea) forests represent the climax vegetation in eastern Germany and western Poland. Here, sessile oak forms pure stands or occurs intermixed with Scots Pine (Pinus sylvestris). A large body of research is available on gene flow, reproduction dynamics, and genetic structure in fragmented landscapes and mixed populations. At the same time, our knowledge regarding large, contiguous, and monospecific populations is considerably less well developed. Our study is an attempt to further develop our understanding of the reproduction ecology of sessile oak as an ecologically and economically important forest tree by analyzing mating patterns and genetic structure within adult trees and seedlings originating from one or two reproduction events in an extensive, naturally regenerating sessile oak forest. We detected positive spatial genetic structure up to 30 meters between adult trees and up to 40 meters between seedlings. Seed dispersal distances averaged 8.4 meters. Pollen dispersal distances averaged 22.6 meters. In both cases, the largest proportion of the dispersal occurred over short distances. Dispersal over longer distances was more common for pollen but also appeared regularly for seeds. The reproductive success of individual trees was highly skewed. Only 41 percent of all adult trees produced any offspring while the majority did not participate in reproduction. Among those trees that contributed to the analyzed seedling sample, 80 percent contributed 1-3 gametes. Only 20 percent of all parent trees contributed four or more gametes. However, these relatively few most fertile trees contributed 51 percent of all gametes within the seedling sample. Vitality and growth differed significantly between reproducing and nonreproducing adult trees with reproducing trees being more vital and vigorous than nonreproducing individuals. Our study demonstrates that extensive, apparently homogenous oak forests are far from uniform on the genetic level. On the contrary, they form highly complex mosaics of remarkably small local neighborhoods. This counterbalances the levelling effect of long-distance dispersal and may increase the species' adaptive potential. Incorporating these dynamics in the management, conservation, and restoration of oak forests can support the conservation of forest genetic diversity and assist those forests in coping with environmental change.

3.
Plants (Basel) ; 9(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992588

RESUMO

European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA