Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 162(3): 493-504, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26189681

RESUMO

Dengue is the most common vector-borne viral disease, causing nearly 400 million infections yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral responses may not be accessible by conventional B cell panning methods. To demonstrate an alternative strategy to generating a therapeutic antibody, we employed a non-immunodominant, but functionally relevant, epitope in domain III of the E protein, and engineered by structure-guided methods an antibody directed to it. The resulting antibody, Ab513, exhibits high-affinity binding to, and broadly neutralizes, multiple genotypes within all four serotypes. To assess therapeutic relevance of Ab513, activity against important human clinical features of dengue was investigated. Ab513 mitigates thrombocytopenia in a humanized mouse model, resolves vascular leakage, reduces viremia to nearly undetectable levels, and protects mice in a maternal transfer model of lethal antibody-mediated enhancement. The results demonstrate that Ab513 may reduce the public health burden from dengue.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Vírus da Dengue/fisiologia , Dengue/terapia , Epitopos Imunodominantes/química , Sequência de Aminoácidos , Animais , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fagocitose , Engenharia de Proteínas , Receptores Fc/imunologia , Alinhamento de Sequência
2.
J Am Chem Soc ; 146(20): 13709-13713, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738955

RESUMO

G-Quadruplex (G4) structures formed by guanine-rich DNA and RNA sequences are implicated in various biological processes. Understanding the mechanisms by which proteins recognize G4 structures is crucial for elucidating their functional roles. Here we present the X-ray crystal structure of an ankyrin protein bound to a parallel G4 structure. Our findings reveal a new specific recognition mode in which a bundle of α-helices and loops of the ankyrin form a flat surface to stack on the G-tetrad core. The protein employs a combination of hydrogen bonds and hydrophobic contacts to interact with the G4, and electrostatic interaction is used to enhance the binding affinity. This binding mechanism provides valuable insights into understanding G4 recognition by proteins.


Assuntos
Anquirinas , Quadruplex G , Modelos Moleculares , Anquirinas/química , Cristalografia por Raios X , Humanos , Ligação Proteica , Ligação de Hidrogênio
3.
PLoS Genet ; 17(8): e1009757, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449766

RESUMO

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mitose/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos , Transporte Proteico , Fuso Acromático/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Biol Chem ; 298(8): 102250, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835220

RESUMO

Rubella, a viral disease characterized by a red skin rash, is well controlled because of an effective vaccine, but outbreaks are still occurring in the absence of available antiviral treatments. The Rubella virus (RUBV) papain-like protease (RubPro) is crucial for RUBV replication, cleaving the nonstructural polyprotein p200 into two multifunctional proteins, p150 and p90. This protease could represent a potential drug target, but structural and mechanistic details important for the inhibition of this enzyme are unclear. Here, we report a novel crystal structure of RubPro at a resolution of 1.64 Å. The RubPro adopts a unique papain-like protease fold, with a similar catalytic core to that of proteases from Severe acute respiratory syndrome coronavirus 2 and foot-and-mouth disease virus while having a distinctive N-terminal fingers domain. RubPro has well-conserved sequence motifs that are also found in its newly discovered Rubivirus relatives. In addition, we show that the RubPro construct has protease activity in trans against a construct of RUBV protease-helicase and fluorogenic peptides. A protease-helicase construct, exogenously expressed in Escherichia coli, was also cleaved at the p150-p90 cleavage junction, demonstrating protease activity of the protease-helicase protein. We also demonstrate that RubPro possesses deubiquitylation activity, suggesting a potential role of RubPro in modulating the host's innate immune responses. We anticipate that these structural and functional insights of RubPro will advance our current understanding of its function and help facilitate more structure-based research into the RUBV replication machinery, in hopes of developing antiviral therapeutics against RUBV.


Assuntos
Peptídeo Hidrolases , Vírus da Rubéola , Motivos de Aminoácidos , Papaína/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Vírus da Rubéola/química , Vírus da Rubéola/enzimologia
5.
Biochem Biophys Res Commun ; 613: 153-158, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35561583

RESUMO

93del is a 16-nucleotide G-quadruplex-forming aptamer which can inhibit the activity of the HIV-1 integrase enzyme at nanomolar concentration. Previous structural analyses of 93del using NMR spectroscopy have shown that the aptamer forms an interlocked G-quadruplex structure in K+ solution. Due to its exceptional stability and unique topology, 93del has been used in many different studies involving DNA G-quadruplexes, such as DNA aptamer and multimer design, as well as DNA fluorescence research. To gain further insights on the structure of this unique aptamer, we have determined several high-resolution crystal structures of 93del and its variants. While confirming the overall dimeric interlocked G-quadruplex folding topology previously determined by NMR, our results reveal important detailed structural information, particularly the formation of a water-mediated A•G•G•G•G pentad. These insights allow us to better understand the formation of various structural elements in G-quadruplexes and should be useful for designing and manipulating G-quadruplex scaffolds with desired properties.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Integrase de HIV , Aptâmeros de Nucleotídeos/química , Integrase de HIV/metabolismo , Água
6.
Nucleic Acids Res ; 48(8): 4562-4571, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32187364

RESUMO

G-quadruplexes are four-stranded nucleic acid structures involved in multiple cellular pathways including DNA replication and telomere maintenance. Such structures are formed by G-rich DNA sequences typified by telomeric DNA repeats. Whilst there is evidence for proteins that bind and regulate G-quadruplex formation, the molecular basis for this remains poorly understood. The budding yeast telomeric protein Rap1, originally identified as a transcriptional regulator functioning by recognizing double-stranded DNA binding sites, was one of the first proteins to be discovered to also bind and promote G-quadruplex formation in vitro. Here, we present the 2.4 Å resolution crystal structure of the Rap1 DNA-binding domain in complex with a G-quadruplex. Our structure not only provides a detailed insight into the structural basis for G-quadruplex recognition by a protein, but also gives a mechanistic understanding of how the same DNA-binding domain adapts to specifically recognize different DNA structures. The key observation is the DNA-recognition helix functions in a bimodal manner: In double-stranded DNA recognition one helix face makes electrostatic interactions with the major groove of DNA, whereas in G-quadruplex recognition a different helix face is used to make primarily hydrophobic interactions with the planar face of a G-tetrad.


Assuntos
DNA/química , Quadruplex G , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a Telômeros/química , Fatores de Transcrição/química , DNA/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Eletricidade Estática , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo
7.
Nucleic Acids Res ; 48(10): 5383-5396, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32374876

RESUMO

Telomeres protect the ends of our chromosomes and are key to maintaining genomic integrity during cell division and differentiation. However, our knowledge of telomeric chromatin and nucleosome structure at the molecular level is limited. Here, we aimed to define the structure, dynamics as well as properties in solution of the human telomeric nucleosome. We first determined the 2.2 Å crystal structure of a human telomeric nucleosome core particle (NCP) containing 145 bp DNA, which revealed the same helical path for the DNA as well as symmetric stretching in both halves of the NCP as that of the 145 bp '601' NCP. In solution, the telomeric nucleosome exhibited a less stable and a markedly more dynamic structure compared to NCPs containing DNA positioning sequences. These observations provide molecular insights into how telomeric DNA forms nucleosomes and chromatin and advance our understanding of the unique biological role of telomeres.


Assuntos
Nucleossomos/química , Telômero/química , Cristalografia por Raios X , DNA/química , Humanos , Modelos Moleculares
8.
RNA ; 25(11): 1481-1496, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31399541

RESUMO

The tRNA (m1G37) methyltransferase TrmD catalyzes m1G formation at position 37 in many tRNA isoacceptors and is essential in most bacteria, which positions it as a target for antibiotic development. In spite of its crucial role, little is known about TrmD in Pseudomonas aeruginosa (PaTrmD), an important human pathogen. Here we present detailed structural, substrate, and kinetic properties of PaTrmD. The mass spectrometric analysis confirmed the G36G37-containing tRNAs Leu(GAG), Leu(CAG), Leu(UAG), Pro(GGG), Pro(UGG), Pro(CGG), and His(GUG) as PaTrmD substrates. Analysis of steady-state kinetics with S-adenosyl-l-methionine (SAM) and tRNALeu(GAG) showed that PaTrmD catalyzes the two-substrate reaction by way of a ternary complex, while isothermal titration calorimetry revealed that SAM and tRNALeu(GAG) bind to PaTrmD independently, each with a dissociation constant of 14 ± 3 µM. Inhibition by the SAM analog sinefungin was competitive with respect to SAM (Ki = 0.41 ± 0.07 µM) and uncompetitive for tRNA (Ki = 6.4 ± 0.8 µM). A set of crystal structures of the homodimeric PaTrmD protein bound to SAM and sinefungin provide the molecular basis for enzyme competitive inhibition and identify the location of the bound divalent ion. These results provide insights into PaTrmD as a potential target for the development of antibiotics.


Assuntos
Pseudomonas aeruginosa/enzimologia , tRNA Metiltransferases/metabolismo , Catálise , Cristalografia por Raios X , Cinética , Ligação Proteica , Conformação Proteica , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química , tRNA Metiltransferases/isolamento & purificação
9.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32907977

RESUMO

Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.


Assuntos
Vírus da Dengue/genética , Vírus da Dengue/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sítio Alostérico , Antivirais/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Dengue/virologia , Transcriptase Reversa do HIV , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , RNA Polimerase Dependente de RNA/efeitos dos fármacos , RNA Polimerase Dependente de RNA/genética , Replicon , Alinhamento de Sequência , Análise de Sequência de Proteína , Proteínas não Estruturais Virais/efeitos dos fármacos , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
10.
J Bacteriol ; 200(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109186

RESUMO

RbdA is a positive regulator of biofilm dispersal of Pseudomonas aeruginosa Its cytoplasmic region (cRbdA) comprises an N-terminal Per-ARNT-Sim (PAS) domain followed by a diguanylate cyclase (GGDEF) domain and an EAL domain, whose phosphodiesterase activity is allosterically stimulated by GTP binding to the GGDEF domain. We report crystal structures of cRbdA and of two binary complexes: one with GTP/Mg2+ bound to the GGDEF active site and one with the EAL domain bound to the c-di-GMP substrate. These structures unveil a 2-fold symmetric dimer stabilized by a closely packed N-terminal PAS domain and a noncanonical EAL dimer. The autoinhibitory switch is formed by an α-helix (S-helix) immediately N-terminal to the GGDEF domain that interacts with the EAL dimerization helix (α6-E) of the other EAL monomer and maintains the protein in a locked conformation. We propose that local conformational changes in cRbdA upon GTP binding lead to a structure with the PAS domain and S-helix shifted away from the GGDEF-EAL domains, as suggested by small-angle X-ray scattering (SAXS) experiments. Domain reorientation should be facilitated by the presence of an α-helical lever (H-helix) that tethers the GGDEF and EAL regions, allowing the EAL domain to rearrange into an active dimeric conformation.IMPORTANCE Biofilm formation by bacterial pathogens increases resistance to antibiotics. RbdA positively regulates biofilm dispersal of Pseudomonas aeruginosa The crystal structures of the cytoplasmic region of the RbdA protein presented here reveal that two evolutionarily conserved helices play an important role in regulating the activity of RbdA, with implications for other GGDEF-EAL dual domains that are abundant in the proteomes of several bacterial pathogens. Thus, this work may assist in the development of small molecules that promote bacterial biofilm dispersal.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalografia , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/genética
11.
Nucleic Acids Res ; 44(22): 10834-10848, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27683218

RESUMO

Bacteria respond to environmental stresses using a variety of signaling and gene expression pathways, with translational mechanisms being the least well understood. Here, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resistance to oxidative stress. Analysis of tRNA from a trmJ mutant revealed that TrmJ catalyzes formation of Cm, Um, and, unexpectedly, Am. Defined in vitro analyses revealed that tRNAMet(CAU) and tRNATrp(CCA) are substrates for Cm formation, tRNAGln(UUG), tRNAPro(UGG), tRNAPro(CGG) and tRNAHis(GUG) for Um, and tRNAPro(GGG) for Am. tRNASer(UGA), previously observed as a TrmJ substrate in Escherichia coli, was not modified by PA14 TrmJ. Position 32 was confirmed as the TrmJ target for Am in tRNAPro(GGG) and Um in tRNAGln(UUG) by mass spectrometric analysis. Crystal structures of the free catalytic N-terminal domain of TrmJ show a 2-fold symmetrical dimer with an active site located at the interface between the monomers and a flexible basic loop positioned to bind tRNA, with conformational changes upon binding of the SAM-analog sinefungin. The loss of TrmJ rendered PA14 sensitive to H2O2 exposure, with reduced expression of oxyR-recG, katB-ankB, and katE These results reveal that TrmJ is a tRNA:Cm32/Um32/Am32 methyltransferase involved in translational fidelity and the oxidative stress response.


Assuntos
Proteínas de Bactérias/química , Estresse Oxidativo , Pseudomonas aeruginosa/enzimologia , RNA de Transferência/metabolismo , tRNA Metiltransferases/química , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Peróxido de Hidrogênio/farmacologia , Metilação , Modelos Moleculares , Pseudomonas aeruginosa/efeitos dos fármacos , RNA Bacteriano/química , tRNA Metiltransferases/fisiologia
12.
J Biol Chem ; 288(17): 11949-59, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23504327

RESUMO

The Bacillus subtilis protein YybT (or GdpP) and its homologs were recently established as stress signaling proteins that exert their biological effect by degrading the bacterial messenger cyclic di-AMP. YybT homologs contain a small Per-ARNT-Sim (PAS) domain (~80 amino acids) that can bind b-type heme with 1:1 stoichiometry despite the small size of the domain and the lack of a conserved heme iron-coordinating residue. We determined the solution structure of the PAS domain of GtYybT from Geobacillus thermodenitrificans by NMR spectroscopy to further probe its function. The solution structure confirms that PASGtYybT adopts the characteristic PAS fold composed of a five-stranded antiparallel ß sheet and a few short α-helices. One α-helix and three central ß-strands of PASGtYybT are noticeably shorter than those of the typical PAS domains. Despite the small size of the protein domain, a hydrophobic pocket is formed by the side chains of nonpolar residues stemming from the ß-strands and α-helices. A set of residues in the vicinity of the pocket and in the C-terminal region at the dimeric interface exhibits perturbed NMR parameters in the presence of heme or zinc protoporphyrin. Together, the results unveil a compact PAS domain with a potential ligand-binding pocket and reinforce the view that the PASYybT domains function as regulatory domains in the modulation of cellular cyclic di-AMP concentration.


Assuntos
Proteínas de Bactérias/química , Geobacillus/química , Dobramento de Proteína , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/genética , Fosfatos de Dinucleosídeos/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
J Biol Chem ; 288(43): 31105-14, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24025331

RESUMO

The dengue virus (DENV) non-structural protein 5 (NS5) comprises an N-terminal methyltransferase and a C-terminal RNA-dependent RNA polymerase (RdRp) domain. Both enzymatic activities form attractive targets for antiviral development. Available crystal structures of NS5 fragments indicate that residues 263-271 (using the DENV serotype 3 numbering) located between the two globular domains of NS5 could be flexible. We observed that the addition of linker residues to the N-terminal end of the DENV RdRp core domain stabilizes DENV1-4 proteins and improves their de novo polymerase initiation activities by enhancing the turnover of the RNA and NTP substrates. Mutation studies of linker residues also indicate their importance for viral replication. We report the structure at 2.6-Å resolution of an RdRp fragment from DENV3 spanning residues 265-900 that has enhanced catalytic properties compared with the RdRp fragment (residues 272-900) reported previously. This new orthorhombic crystal form (space group P21212) comprises two polymerases molecules arranged as a dimer around a non-crystallographic dyad. The enzyme adopts a closed "preinitiation" conformation similar to the one that was captured previously in space group C2221 with one molecule per asymmetric unit. The structure reveals that residues 269-271 interact with the RdRp domain and suggests that residues 263-268 of the NS5 protein from DENV3 are the major contributors to the flexibility between its methyltransferase and RdRp domains. Together, these results should inform the screening and development of antiviral inhibitors directed against the DENV RdRp.


Assuntos
Vírus da Dengue/fisiologia , Metiltransferases/química , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Replicação Viral/fisiologia , Estabilidade Enzimática/fisiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
14.
J Virol ; 87(9): 5291-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23408636

RESUMO

We report a highly reproducible method to crystallize the RNA-dependent RNA polymerase (RdRp) domain of dengue virus serotype 3 (DENV-3), allowing structure refinement to a 1.79-Å resolution and revealing amino acids not seen previously. We also present a DENV-3 polymerase/inhibitor cocrystal structure at a 2.1-Å resolution. The inhibitor binds to the RdRp as a dimer and causes conformational changes in the protein. The improved crystallization conditions and new structural information should accelerate structure-based drug discovery.


Assuntos
Vírus da Dengue/enzimologia , Inibidores Enzimáticos/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Cristalização , Vírus da Dengue/química , Vírus da Dengue/genética , Dimerização , Inibidores Enzimáticos/metabolismo , Modelos Moleculares , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
SLAS Discov ; 29(5): 100164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796112

RESUMO

Zika virus (ZIKV) continues to pose a significant global public health threat, with recurring regional outbreaks and potential for pandemic spread. Despite often being asymptomatic, ZIKV infections can have severe consequences, including neurological disorders and congenital abnormalities. Unfortunately, there are currently no approved vaccines or antiviral drugs for the prevention or treatment of ZIKV. One promising target for drug development is the ZIKV NS2B-NS3 protease due to its crucial role in the virus life cycle. In this study, we established a cell-based ZIKV protease inhibition assay designed for high-throughput screening (HTS). Our assay relies on the ZIKV protease's ability to cleave a cyclised firefly luciferase fused to a natural cleavage sequence between NS2B and NS3 protease within living cells. We evaluated the performance of our assay in HTS setting using the pharmacologic controls (JNJ-40418677 and MK-591) and by screening a Library of Pharmacologically Active Compounds (LOPAC). The results confirmed the feasibility of our assay for compound library screening to identify potential ZIKV protease inhibitors.


Assuntos
Antivirais , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Inibidores de Proteases , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteases/farmacologia , Humanos , Antivirais/farmacologia , Descoberta de Drogas/métodos , Infecção por Zika virus/virologia , Infecção por Zika virus/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Animais , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
16.
Commun Biol ; 7(1): 1070, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217277

RESUMO

In the absence of an efficacious vaccine, chemotherapy remains crucial to prevent and treat malaria. Given its key role in haemoglobin degradation, falcilysin constitutes an attractive target. Here, we reveal the mechanism of enzymatic inhibition of falcilysin by MK-4815, an investigational new drug with potent antimalarial activity. Using X-ray crystallography, we determine two binary complexes of falcilysin in a closed state, bound with peptide substrates from the haemoglobin α and ß chains respectively. An antiparallel ß-sheet is formed between the substrate and enzyme, accounting for sequence-independent recognition at positions P2 and P1. In contrast, numerous contacts favor tyrosine and phenylalanine at the P1' position of the substrate. Cryo-EM studies reveal a majority of unbound falcilysin molecules adopting an open conformation. Addition of MK-4815 shifts about two-thirds of falcilysin molecules to a closed state. These structures give atomic level pictures of the proteolytic cycle, in which falcilysin interconverts between a closed state conducive to proteolysis, and an open conformation amenable to substrate diffusion and products release. MK-4815 and quinolines bind to an allosteric pocket next to a hinge region of falcilysin and hinders this dynamic transition. These data should inform the design of potent inhibitors of falcilysin to combat malaria.


Assuntos
Antimaláricos , Plasmodium falciparum , Plasmodium falciparum/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Cristalografia por Raios X , Modelos Moleculares , Microscopia Crioeletrônica , Humanos
17.
J Biol Chem ; 287(27): 23203-15, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22589546

RESUMO

Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named AT(DYN10)) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/ß hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/ß fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser(651) residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Enedi-Inos/metabolismo , Micromonospora/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Acetilcoenzima A/metabolismo , Aciltransferases/genética , Motivos de Aminoácidos , Antibacterianos/química , Domínio Catalítico , Clonagem Molecular , Cristalografia , Glicerol/química , Micromonospora/genética , Policetídeo Sintases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Artigo em Inglês | MEDLINE | ID: mdl-22869111

RESUMO

The crystal structure of human receptor for activated C-kinase 1 (hRack1) protein is reported at 2.45 Šresolution. The crystals belongs to space group P4(1)2(1)2, with three molecules per asymmetric unit. The hRack1 structure features a sevenfold ß-propeller, with each blade housing a sequence motif that contains a strictly conserved Trp, the indole group of which is embedded between adjacent blades. In blades 1-5 the imidazole group of a His residue is wedged between the side chains of a Ser residue and an Asp residue through two hydrogen bonds. The hRack1 crystal structure forms a starting basis for understanding the remarkable scaffolding properties of this protein.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Neoplasias/química , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Quinase C Ativada , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
19.
Antiviral Res ; 182: 104900, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763315

RESUMO

Flavivirus is a genus of the Flaviviridae family which includes significant emerging and re-emerging human disease-causing arboviruses such as dengue and Zika viruses. Flaviviral non-structural protein 3 (NS3) protease-helicase plays essential roles in viral replication and is an attractive antiviral target. A construct which connects the cytoplasmic cofactor region of NS2B and NS3 protease with an artificial glycine-rich flexible linker has been widely used for structural, biochemical and drug-screening studies. The effect of this linker on the dynamics and enzymatic activity of the protease has been studied by several biochemical and NMR methods but the findings remained inconclusive. Here, we designed and carried out a comparative study of constructs of NS2B cofactor joined to the full length DENV4 NS3 in three different ways, namely bNS2B47NS3 (bivalent), eNS2B47NS3(enzymatically cleavable) and gNS2B47NS3 (glycine-rich linker). We report the crystal structures of linked and unlinked NS2B47-NS3 constructs in their free state and in complex with bovine pancreatic trypsin inhibitor (BPTI). These structures demonstrate that the NS2B cofactor predominantly adopts a closed conformation in complex with full-length NS3. The glycine-rich linker between NS2B and NS3 may promote the open conformation which interferes with protease activity. This negative impact on the enzyme structure and function is restricted to the protease activity as the ATPase activity is not affected in vitro.


Assuntos
Vírus da Dengue/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Cristalografia por Raios X , Vírus da Dengue/enzimologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Replicação Viral
20.
Sci Rep ; 10(1): 18397, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110123

RESUMO

The current state-of-the-art technology employed to assess anti-human leukocyte antigen antibodies (Anti-HLA Ab) for donor-recipient matching and patient risk stratification in renal transplantation is the single antigen bead (SAB) assay. However, there are limitations to the SAB assay as it is not quantitative and due to variations in techniques and reagents, there is no standardization across laboratories. In this study, a structurally-defined human monoclonal alloantibody was employed to provide a mechanistic explanation for how fundamental alloantibody biology influences the readout from the SAB assay. Performance of the clinical SAB assay was evaluated by altering Anti-HLA Ab concentration, subclass, and detection reagents. Tests were conducted in parallel by two internationally accredited laboratories using standardized protocols and reagents. We show that alloantibody concentration, subclass, laboratory-specific detection devices, subclass-specific detection reagents all contribute to a significant degree of variation in the readout. We report a significant prozone effect affecting HLA alleles that are bound strongly by the test alloantibody as opposed to those bound weakly and this phenomenon is independent of complement. These data highlight the importance for establishing international standards for SAB assay calibration and have significant implications for our understanding of discordance in previous studies that have analyzed its clinical relevance.


Assuntos
Antígenos HLA/imunologia , Algoritmos , Anticorpos Monoclonais/imunologia , Antígenos HLA/química , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA