Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Vox Sang ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772910

RESUMO

BACKGROUND AND OBJECTIVES: To evaluate the severity of haemolytic disease of the foetus and newborn (HDFN) in subsequent pregnancies with RhD immunization and to identify predictive factors for severe disease. MATERIALS AND METHODS: Nationwide prospective cohort study, including all pregnant women with RhD antibodies. All women with at least two pregnancies with RhD antibodies and RhD-positive foetuses were selected. The main outcome measure was the severity of HDFN in the first and subsequent pregnancy at risk. A subgroup analysis was performed for the group of women where RhD antibodies developed after giving birth to an RhD-positive child and thus after receiving anti-D at least twice (group A) or during the first pregnancy at risk for immunization (group B). RESULTS: Sixty-two RhD immunized women with a total of 150 RhD-positive children were included. The severity of HDFN increased for the whole group significantly in the subsequent pregnancy (p < 0.001), although it remained equal or even decreased in 44% of women. When antibodies were already detected at first trimester screening in the first immunized pregnancy, after giving birth to an RhD-positive child (group A), severe HDFN in the next pregnancy was uncommon (22%). Especially when no therapy or only non-intensive phototherapy was indicated during the first immunized pregnancy (6%) or if the antibody-dependent cell-mediated cytotoxicity result remained <10%. Contrarily, women with a negative first trimester screening and RhD antibodies detected later during the first pregnancy of an RhD-positive child (group B), often before they had ever received anti-D prophylaxis, were most prone for severe disease in a subsequent pregnancy (48%). CONCLUSION: RhD-mediated HDFN in a subsequent pregnancy is generally more severe than in the first pregnancy at risk and can be estimated using moment of antibody detection and severity in the first immunized pregnancy. Women developing antibodies in their first pregnancy of an RhD-positive child are at highest risk of severe disease in the next pregnancy.

2.
J Immunol ; 205(12): 3456-3467, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188070

RESUMO

Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR.


Assuntos
Sequência de Aminoácidos , Ativação do Complemento , Complemento C1q , Imunoglobulina G , Receptores de IgG , Deleção de Sequência , Ressonância de Plasmônio de Superfície , Complemento C1q/química , Complemento C1q/genética , Complemento C1q/imunologia , Glicina/química , Glicina/genética , Glicina/imunologia , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/imunologia
3.
Transfusion ; 61(3): 713-721, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33528025

RESUMO

BACKGROUND: During pregnancy, maternal red blood cell (RBC) antibodies can lead to life-threatening fetal hemolysis and anemia. Women can become immunized by a pregnancy or an unmatched transfusion. Our aim was to quantify the effect of a nationwide K-matched transfusion policy for women of childbearing age potential to prevent K-immunization in pregnancy. STUDY DESIGN AND METHODS: In this nation-wide policy change evaluation study we determined the occurrence of RBC antibodies before and after introduction of a K-matched transfusion policy and evaluated the cause K alloimmunization 10 years after introduction of this measure. K-matched transfusion for females under 45 years of age is advised in the Dutch transfusion guideline since 2004. We used laboratory data from pregnancies with RBC antibodies identified in the period 1999-2018 obtained as part of a population-based screening program in the Netherlands. RESULTS: Tests of 36 286 pregnancies produced a positive antibody screening result which concerned anti-K in 1550 pregnancies. The occurrence of anti-K decreased from 67.9 to 20.2 per 100 000 pregnancies. The relative risk reduction was 0.70 which largely exceeded the relative risk reduction of 0.27 for antibodies against RBC antigens for which no preventive matching is required. The number of pregnancies at risk for anti-K-mediated disease decreased from 9.7 to 4.2 per 100 000 pregnancies. CONCLUSIONS: A K-matched transfusion policy is associated with a major decrease in a number of pregnant women with anti-K and pregnancies at risk for anti-K-mediated disease. A relatively simple measure is now shown to impact prevention of hemolytic disease in the fetus and newborn.


Assuntos
Incompatibilidade de Grupos Sanguíneos/imunologia , Transfusão de Sangue/métodos , Eritroblastose Fetal/prevenção & controle , Eritrócitos/imunologia , Hemólise/imunologia , Isoanticorpos/imunologia , Sistema do Grupo Sanguíneo de Kell/imunologia , Adulto , Feminino , Diretrizes para o Planejamento em Saúde , Humanos , Recém-Nascido , Isoanticorpos/sangue , Sistema do Grupo Sanguíneo de Kell/sangue , Países Baixos , Razão de Chances , Políticas , Gravidez , Fatores de Risco
4.
Transfusion ; 59(2): 754-761, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30488958

RESUMO

BACKGROUND: Blood-group typing of donors and patients is essential to avoid incompatible transfusions. Transfusion of incompatible RBCs may result in alloimmunization complicating future transfusions or in the presence of antibodies in adverse reactions. With more than 300 blood group antigens identified, it is difficult to provide fully compatible blood. Currently, standard practice is to match for the most immunogenic antigens. While the current agglutination-based RBC-typing methods are reliable for testing a selected number of antigens, they are not easily adaptable for high-throughput multiplex blood typing beyond the current standard. STUDY DESIGN AND METHODS: Surface plasmon resonance (SPR) is a label-free method to follow molecular-and, very recently, also cellular-interactions in real time. Demonstration of binding of RBCs to blood group antigen-specific antibodies by SPR has already been achieved. Here, we demonstrate the generation of an SPR array equipped with clinically relevant blood group antibodies (A, B, and Rh blood groups). To validate this method, we blindly compared typing of 946 blood donors with results of current diagnostic agglutination-based methods. RESULTS: RBC typing was achieved by monitoring RBC binding to blood group-specific antibodies on the sensor simultaneously within 5 minutes per sample. Regeneration of the chip was robust, allowing for typing of at least 100 samples. The typing results gave a 100% match with classical serology with all antibodies tested besides anti-E/e monoclonals, which gave inconsistent results due to low antibody specificity. CONCLUSION: This study demonstrates that SPR-based RBC typing for multiple antigens can be realized simultaneously with high-quality antibodies, enabling reduced hands-on time and possibly improving cost efficiency.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Tipagem e Reações Cruzadas Sanguíneas/métodos , Eritrócitos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Adulto , Antígenos de Grupos Sanguíneos/análise , Incompatibilidade de Grupos Sanguíneos/metabolismo , Incompatibilidade de Grupos Sanguíneos/patologia , Incompatibilidade de Grupos Sanguíneos/prevenção & controle , Eritrócitos/patologia , Feminino , Humanos , Masculino
5.
Transfusion ; 59(4): 1359-1366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702752

RESUMO

BACKGROUND: Alloimmunization against the high-frequency Vel blood group antigen may result in transfusion reactions or hemolytic disease of fetus and newborn. Patients with anti-Vel alloantibodies require Vel-negative blood but Vel-negative individuals are rare (1:4000). Identification of Vel-negative donors ensures availability of Vel-negative blood; however, accurate Vel blood group typing is difficult due to variable Vel antigen expression and limited availability of anti-Vel typing sera. We report the production of a recombinant anti-Vel that also identifies weak Vel expression. STUDY DESIGN AND METHODS: A recombinant anti-Vel monoclonal antibody was produced by cloning the variable regions from an anti-Vel-specific B cell isolated from an alloimmunized patient into a vector harboring the constant regions of immunoglobulin (Ig)G1-kappa or IgM-kappa. Antibody Vel specificity was tested by reactivity to SMIM1-transfected HEK293T cells and by testing various red blood cells (RBCs) of donors with normal, weak, or no Vel expression. High-throughput donor screening applicability was tested using an automated blood group analyzer. RESULTS: A Vel-specific IgM class antibody was produced. The antibody was able to distinguish between Vel-negative and very weak Vel antigen-expressing RBCs by direct agglutination and in high-throughput settings using a fully automated blood group analyzer and performed better than currently used human anti-Vel sera. High-throughput screening of 13,288 blood donations identified three new Vel-negative donors. CONCLUSION: We generated a directly agglutinating recombinant anti-Vel IgM, M3F5S-IgM, functional in manual, automated agglutination assays and flow cytometry settings. This IgM anti-Vel will improve diagnostics by facilitating the identification of Vel-negative blood donors.


Assuntos
Anticorpos Monoclonais/química , Antígenos de Grupos Sanguíneos/imunologia , Tipagem e Reações Cruzadas Sanguíneas , Imunoglobulina M/química , Isoanticorpos/química , Aglutinação , Anticorpos Monoclonais/imunologia , Antígenos de Grupos Sanguíneos/química , Feminino , Células HEK293 , Humanos , Imunoglobulina M/imunologia , Recém-Nascido , Isoanticorpos/imunologia , Masculino , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia
8.
Transfusion ; 56(8): 2122-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27239725

RESUMO

BACKGROUND: Fetal RHD genotyping allows targeted diagnostic testing, fetal surveillance, and eventually intrauterine treatment to D-alloimmunized pregnant women who carry an RHD+ fetus. However, false-positive and false-negative results of noninvasive prenatal fetal RHD genotyping have been described due to a variety of causes. In this case report we present two cases where noninvasive fetal RHD typing was complicated by a previous bone marrow transplantation (BMT). CASE REPORT: We describe two women with a history of allogeneic BMT in early childhood. Both were born D+ and received a transplant of their D- male sibling. Anti-D were detected during pregnancy in one of them. The biologic father of this pregnancy was D+. In both cases polymerase chain reaction procedures specific for RHD on maternal plasma DNA were positive whereas a D- neonate was born in one case (Case 1). CONCLUSION: False-positive results of noninvasive fetal RHD genotyping occur in D+ women transplanted with marrow of a D- donor, due to circulating cell-free DNA originating from nonhematopoietic tissue. The cases highlight that health care professionals and laboratories should be aware that allogeneic BMT can be a cause for false-positive results in fetal RHD genotyping with cell-free DNA in maternal plasma, and likewise the wrong fetal sex can be reported in the case of a male donor and a female fetus. Based on one of the cases we also recommend giving D- blood products to young female patients who receive a BMT of D- donors.


Assuntos
Transplante de Medula Óssea , Sistema do Grupo Sanguíneo Rh-Hr/genética , Adulto , Feminino , Genótipo , Humanos , Reação em Cadeia da Polimerase , Gravidez , Adulto Jovem
9.
Transfusion ; 51(7): 1389-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21214579

RESUMO

BACKGROUND: Antigens of the Knops blood group system are present on complement component (3b/4b) receptor 1 (CR1/CD35), which is a transmembrane glycoprotein encoded by the CR1 gene. Eight of the nine known antigens of this system are linked to polymorphisms in Exon 29. The molecular background of one antigen, York (Yk(a)), has not yet been described. STUDY DESIGN AND METHODS: We aimed to identify a polymorphism associated with the absence of Yk(a) to enable molecular typing. Yk(a)-negative individuals were identified by serologic typing. Their CR1 gene was partially sequenced and compared to that of Yk(a)-positive individuals. Loss of Yk(a) antigen was investigated by expressing the SCR22/23 domain of both wild-type and mutated CR1 as a GPI-linked protein on HEK293 cells. RESULTS: We observed that absence of the Yk(a) antigen is caused by a mutation in Exon 26 of the CR1 gene. This 4223C>T mutation results in a 1408T>M change at the protein level. Ten of 117 donors (8.5%) were homozygous TT, confirming the Caucasian frequency of 8% Yk(a)-negative individuals. Serologically, these TT donors showed a Yk(a)-negative phenotype, while CC/CT individuals were Yk(a)-positive. While the Yk(a) antigen was present on HEK293 cells expressing wild-type constructs, cells expressing the 4223C>T variant were Yk(a) negative. CONCLUSION: We identified a 4223C>T sequence variation in the CR1 gene causing absence of the Yk(a) antigen of the Knops blood group system. With this finding, all polymorphisms of the known Knops blood group antigens have been revealed, enabling molecular testing to contribute to red blood cell alloantibody identification procedures.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Tipagem e Reações Cruzadas Sanguíneas/métodos , Polimorfismo Genético , Receptores de Complemento 3b/genética , Antígenos de Grupos Sanguíneos/imunologia , Genótipo , Humanos , Mutação Puntual , Análise de Sequência de DNA , População Branca
10.
Sci Rep ; 11(1): 18545, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535746

RESUMO

Emm is a high incidence red cell antigen with eight previously reported Emm- probands. Anti-Emm appears to be naturally occurring yet responsible for a clinically significant acute hemolytic transfusion reaction. Previous work suggests that Emm is located on a GPI-anchored protein, but the antigenic epitope and genetic basis have been elusive. We investigated samples from a South Asian Indian family with two Emm- brothers by whole genome sequencing (WGS). Additionally, samples from four unrelated Emm- individuals were investigated for variants in the candidate gene. Filtering for homozygous variants found in the Emm- brothers and by gnomAD frequency of < 0.001 resulted in 1818 variants with one of high impact; a 2-bp deletion causing a frameshift and premature stop codon in PIGG [NM_001127178.3:c.2624_2625delTA, p.(Leu875*), rs771819481]. PIGG encodes for a transferase, GPI-ethanolaminephosphate transferase II, which adds ethanolamine phosphate (EtNP) to the second mannose in a GPI-anchor. The four additional unrelated Emm- individuals had various PIGG mutations; deletion of Exons 2-3, deletion of Exons 7-9, insertion/deletion (indel) in Exon 3, and new stop codon in Exon 5. The Emm- phenotype is associated with a rare deficiency of PIGG, potentially defining a new Emm blood group system composed of EtNP bound to mannose, part of the GPI-anchor. The results are consistent with the known PI-linked association of the Emm antigen, and may explain the production of the antibody in the absence of RBC transfusion. Any association with neurologic phenotypes requires further research.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adulto , Idoso , Eritropoese , Feminino , Mutação da Fase de Leitura , Deleção de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem
11.
Blood Adv ; 4(24): 6218-6229, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33351118

RESUMO

Senescence of erythrocytes is characterized by a series of changes that precede their removal from the circulation, including loss of red cell hydration, membrane shedding, loss of deformability, phosphatidyl serine exposure, reduced membrane sialic acid content, and adhesion molecule activation. Little is known about the mechanisms that initiate these changes nor is it known whether they are interrelated. In this study, we show that Ca2+-dependent K+ efflux (the Gardos effect) drives erythrocyte senescence. We found that increased intracellular Ca2+ activates the Gardos channel, leading to shedding of glycophorin-C (GPC)-containing vesicles. This results in a loss of erythrocyte deformability but also in a marked loss of membrane sialic acid content. We found that GPC-derived sialic acid residues suppress activity of both Lutheran/basal cell adhesion molecule (Lu/BCAM) and CD44 by the formation of a complex on the erythrocyte membrane, and Gardos channel-mediated shedding of GPC results in Lu/BCAM and CD44 activation. This phenomenon was observed as erythrocytes aged and on erythrocytes that were otherwise prone to clearance from the circulation, such as sickle erythrocytes, erythrocytes stored for transfusion, or artificially dehydrated erythrocytes. These novel findings provide a unifying concept on erythrocyte senescence in health and disease through initiation of the Gardos effect.


Assuntos
Sistema do Grupo Sanguíneo Lutheran , Protestantismo , Adesão Celular , Moléculas de Adesão Celular , Eritrócitos
12.
Sci Rep ; 7(1): 8187, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811589

RESUMO

Autoimmune hemolytic anemia (AIHA) is a potentially severe disease in which red blood cells (RBC) are destroyed by IgG anti-RBC autoantibodies which can lead to hemolysis. We recently found IgG Fc-glycosylation towards platelet and RBC alloantigens to be skewed towards decreased fucosylation, increased galactosylation and sialylation. The lowered core-fucosylation increases the affinity of the pathogenic alloantibodies to FcγRIIIa/b, and hence RBC destruction. It is known that in autoimmune diseases plasma IgG1 galactosylation and sialylation are lowered, but Fc-glycosylation of RBC-specific autoantibodies has never been thoroughly analyzed. We investigated by mass spectrometry the N-linked RBC autoantibody and plasma IgG1 Fc-glycosylation in relation to occurrence of hemolysis for 103 patients with a positive direct antiglobulin test (DAT). We observed that total IgG1 purified from plasma of patients with RBC-bound antibodies showed significantly decreased galactosylation and sialylation levels compared to healthy controls, similar to what previously has been shown for other autoimmune diseases. The anti-RBC- autoantibodies showed a profile with even lower galactosylation, but higher sialylation and lower bisection levels. In contrast to alloantibodies against RBCs, RBC-bound IgG1 Fc-fucosylation was not different between healthy controls and patients. Analysis of anti-RBC Fc-glycoprofiles suggested that lower bisection and higher galactosylation associate with lower Hb levels.


Assuntos
Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Eritrócitos/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/imunologia , Anemia Hemolítica Autoimune/metabolismo , Autoanticorpos/sangue , Feminino , Glicosilação , Hemólise/imunologia , Humanos , Imunoglobulina G/sangue , Masculino , Espectrometria de Massas , Polissacarídeos/metabolismo , Índice de Gravidade de Doença
13.
Transfusion ; 46(12): 2162-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17176330

RESUMO

BACKGROUND: Antibodies produced against the D antigen make use of IGHV genes restricted to the IGHV3 superfamily. These findings are based on the IGHV gene analysis in anti-D-producing B cells from hyperimmunized donors, however, and therefore the restriction might be due to the hyperimmunization. In this study the IGHV gene usage of anti-Rh-producing B cells in a woman who was immunized in the last trimester of her pregnancy was analyzed. STUDY DESIGN AND METHODS: Serologic analysis was performed by absorption and elution. Antibody-dependent cellular cytotoxicity (ADCC) of the different anti-Rh was determined. A phage display library was constructed from 2.2 x 10(6) isolated B cells and pannings were performed with red cells of the r'r, R1R1, and R2R2 phenotype. RESULTS: A plasma sample of the immunized person showed high levels of both anti-D and anti-G and low levels of anti-C. Anti-D and anti-G contributed equally strong to the ADCC whereas anti-C did not. Eighteen anti-D-, 5 anti-G-, and 1 anti-C-specific phage clones were found, of which 16, 2, and 1 used the IGHV3s genes, respectively. CONCLUSION: For the first time a restriction to the IGHV3s genes in anti-D in a naturally immunized pregnant woman is shown. Moreover, the use of IGHV3s genes appears to be present in anti-C and anti-G as well. Therefore, it is concluded that restricted IGHV3s gene usage in anti-D is not due to hyperimmunization but due to characteristics of the Rh antigens and the intrinsic binding capacities of IGHV3s genes, supporting the common Rh footprint hypothesis.


Assuntos
Doadores de Sangue , Genes de Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Feminino , Rearranjo Gênico , Humanos , Imunização , Biblioteca de Peptídeos
14.
Transfusion ; 46(4): 606-15, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16584437

RESUMO

BACKGROUND: The RHD phylogeny in humans shows four main clusters of which three are predominantly observed in (African) black persons. Each of the African clusters is characterized by specific amino acid substitutions relative to the Eurasian RHD allele. RH phylogeny defines the framework for identification of clinically relevant aberrant alleles. This study focuses on the weak D type 4 cluster (characterized by RHD(T201R, F223V) (602C>G 667T>G)) in five ethnic groups. STUDY DESIGN AND METHODS: A total of 1702 samples were screened for the presence of 602C>G and 667T>G by sequence-specific polymerase chain reaction (PCR-SSP). Eighty samples were assigned to the weak D type 4 cluster and were molecularly characterized by PCR-SSP and RHD sequencing. Antigens of aberrant alleles were characterized with monoclonal anti-D according to the 37-epitope model when possible. RESULTS: Five new aberrant alleles, DIII type 6, DIII type 7, DARE, RHD(T201R, F223V) (without 819G>A), and RHD(F223V), were identified and DIII type 6, DARE, and RHD(F223V) were serologically characterized with monoclonal anti-D. Both the DARE and RHD(F223V) showed epitope loss. It is postulated that the 1136C>T nucleotide substitution (characteristic for the DAU allele cluster) is present on the DVa(KOU) allele. CONCLUSION: Identification of the new variant alleles refines the phylogeny of RHD in humans. The proposed DVa(KOU) allele with 1136C>T (DVa(KOU)T379M) is probably caused by conversion of the DAU0 allele and the DVa(KOU) allele, forming a phylogenetic link between the DV allele and the DAU cluster. By describing the RHD(F223V) (602C>G) and RHD(T201R, F223V) (602C>G and 667T>G) alleles formal proof is given for the origin of the non-Eurasian cluster.


Assuntos
Variação Genética , Polimorfismo de Nucleotídeo Único , Sistema do Grupo Sanguíneo Rh-Hr/genética , Substituição de Aminoácidos , População Negra/genética , Análise por Conglomerados , Etiópia , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA