Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(35): 14296-301, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940339

RESUMO

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Solo , Dióxido de Carbono/análise , Metano/análise , Oxigênio/análise
2.
Glob Chang Biol ; 21(2): 973-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25242445

RESUMO

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.


Assuntos
Agricultura/métodos , Biodiversidade , Microbiologia do Solo , Europa (Continente)
3.
Ecotoxicology ; 23(3): 437-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553833

RESUMO

The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.


Assuntos
Invertebrados/efeitos dos fármacos , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Finlândia , Nematoides/efeitos dos fármacos , Árvores , Armas
4.
Oecologia ; 170(3): 821-33, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22555357

RESUMO

Soils deliver important ecosystem services, such as nutrient provision for plants and the storage of carbon (C) and nitrogen (N), which are greatly impacted by drought. Both plants and soil biota affect soil C and N availability, which might in turn affect their response to drought, offering the potential to feed back on each other's performance. In a greenhouse experiment, we compared legacy effects of repeated drought on plant growth and the soil food web in two contrasting land-use systems: extensively managed grassland, rich in C and with a fungal-based food web, and intensively managed wheat lower in C and with a bacterial-based food web. Moreover, we assessed the effect of plant presence on the recovery of the soil food web after drought. Drought legacy effects increased plant growth in both systems, and a plant strongly reduced N leaching. Fungi, bacteria, and their predators were more resilient after drought in the grassland soil than in the wheat soil. The presence of a plant strongly affected the composition of the soil food web, and alleviated the effects of drought for most trophic groups, regardless of the system. This effect was stronger for the bottom trophic levels, whose resilience was positively correlated to soil available C. Our results show that plant belowground inputs have the potential to affect the recovery of belowground communities after drought, with implications for the functions they perform, such as C and N cycling.


Assuntos
Secas , Cadeia Alimentar , Desenvolvimento Vegetal , Plantas/metabolismo , Microbiologia do Solo , Solo , Animais , Disponibilidade Biológica , Carbono/farmacocinética , Ecossistema , Inglaterra , Fungos , Herbivoria , Nematoides , Nitrogênio/farmacocinética , Ciclo do Nitrogênio , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Triticum
5.
Environ Toxicol Chem ; 31(12): 2771-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22933087

RESUMO

Changes in leaching, availability, bioaccumulation, and vertical distribution of lead (Pb) in soil 20 years after the cessation of shooting activity were studied by comparing three pine forest sites in southern Finland: an active shooting range, an abandoned shooting range, and a noncontaminated control site. At both shooting ranges, shooting activity had lasted for 20 years, but it had taken place 20 years earlier at the abandoned range. Up to 4 kg m(-2) of Pb pellets had accumulated in the soil at both shooting ranges, and extremely high Pb concentrations, reaching 50,000 mg kg(-1) , were detected in the organic soil layer. Elevated Pb concentrations were also found in leachate waters and in the biota. Concentrations of Pb in the top organic soil layer and in some of the biota were lower at the abandoned shooting range, which can be taken as a sign of starting recovery of the forest ecosystem. However, the concentration of water-extractable Pb had not decreased in the topsoil, possibly indicating the release of Pb from decaying litter. Deeper in the organic soil layer, weathering of Pb pellets enhanced Pb availability and leaching, indicating an increased risk of groundwater contamination over time at shooting sites located above aquifers.


Assuntos
Chumbo/análise , Poluentes do Solo/química , Solo/química , Árvores , Armas , Biota , Monitoramento Ambiental , Finlândia , Modelos Químicos , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA