Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microcirculation ; 26(2): e12493, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30030876

RESUMO

OBJECTIVE: Stem cell-based regenerative therapies have been intensively studied with the aim to define an ideal cell type for the treatment of myocardial infarction. We tested systemically delivered, platelet-targeted induced vascular progenitor cells (iVPCs) to study their potential to salvage damaged myocardium after ischemia-reperfusion injury. METHODS: Using a mouse model of ischemia-reperfusion injury, we tested the potential of platelet-targeted iVPCs (1 × 106 targ-iVPCs) compared to non-targ-iVPCs and a saline control. Bioluminescence imaging, echocardiography, and histological analyses were performed. RESULTS: Four weeks after ischemia-reperfusion injury, systemic delivery of targ-iVPCs led to reduced fibrosis and infarct size (PBS: 25.7 ± 3.9 vs targ-iVPC: 18.4 ± 6.6 vs non-targ-iVPC: 25.1 ± 3.7%I/LV, P < 0.05), increased neovascularization, and restored cardiac function (PBS: 44.0 ± 4.2 vs targ-iVPC: 54.3 ± 4.5 vs non-targ-iVPC: 46.4 ± 3.8%EF, P < 0.01). Cell tracking experiments revealed entrapment of intravenously injected iVPCs in the pulmonary microvasculature in both cell-treated groups. CONCLUSIONS: Systemic delivery of iVPCs after cardiac ischemia-reperfusion injury is limited by pulmonary entrapment of the cells. Nevertheless, targ-iVPCs reduced infarct size, fibrosis, increased neovascularization, and most importantly retained cardiac function. These findings contribute to the mechanistic discussion of cell-based therapy and ultimately identify activated platelet-targeted iVPCs as candidates for cell therapy and also describe cell therapy benefits without the necessity of engrafting.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Microvasos/citologia , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Plaquetas/citologia , Comunicação Celular , Rastreamento de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Pulmão/irrigação sanguínea , Camundongos , Comunicação Parácrina , Resultado do Tratamento
2.
Mol Ther ; 26(4): 1056-1065, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29525742

RESUMO

Abdominal aortic aneurysm (AAA) is an often deadly disease without medical, non-invasive treatment options. The upregulation of vascular cell adhesion molecule-1 (VCAM-1) on aortic endothelium provides an early target epitope for a novel biotechnological theranostic approach. MicroRNA-126 was used as a therapeutic agent, based on its capability to downregulate VCAM-1 expression in endothelial cells and thereby reduces leukocyte adhesion and exerts anti-inflammatory effects. Ultrasound microbubbles were chosen as carriers, allowing both molecular imaging as well as targeted therapy of AAA. Microbubbles were coupled with a VCAM-1-targeted single-chain antibody (scFvmVCAM-1) and a microRNA-126 mimic (M126) constituting theranostic microbubbles (TargMB-M126). TargMB-M126 downregulates VCAM-1 expression in vitro and in an in vivo acute inflammatory murine model. Most importantly, using TargMB-M126 and ultrasound-guided burst delivery of M126, the development of AAA in an angiotensin-II-induced mouse model can be prevented. Overall, we describe a unique biotechnological theranostic approach with the potential for early diagnosis and long-sought-after medical therapy of AAA.


Assuntos
Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Terapia Genética , MicroRNAs/genética , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/terapia , Biomarcadores , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais , Técnicas de Transferência de Genes , Terapia Genética/métodos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/administração & dosagem , MicroRNAs/química , Imagem Molecular , Anticorpos de Cadeia Única/farmacologia , Ultrassonografia , Molécula 1 de Adesão de Célula Vascular/antagonistas & inibidores , Molécula 1 de Adesão de Célula Vascular/química , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Mol Pharm ; 11(8): 2855-63, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24999533

RESUMO

Imaging of activated platelets using an activation specific anti-GPIIb/IIIa integrin single-chain antibody (scFvanti-LIBS) conjugated to a positron emitting copper-64 complex of a cage amine sarcophagine chelator (MeCOSar) is reported. This tracer was compared in vitro to a (64)Cu(II) complex of the scFv conjugated to another commonly used macrocycle, DOTA. The scFvanti-LIBS-MeCOSar conjugate was radiolabeled with (64)Cu(II) rapidly under mild conditions and with higher specific activity than scFvanti-LIBS-DOTA. The utility of scFvanti-LIBS-MeCOSar as a diagnostic agent was assessed in vivo in a mouse model of acute thrombosis. The uptake of scFvanti-LIBS-(64)CuMeCOSar in the injured vessel was significantly higher than the noninjured vessel. Positron emission tomography (PET) was used to show accumulation of scFvanti-LIBS-(64)CuMeCOSar with high and specific uptake in the injured vessel. ScFvanti-LIBS-(64)CuMeCOSar is an excellent tool for highly sensitive in vivo detection of activated platelets in PET and has the potential to be used for early diagnosis of acute thrombotic events.


Assuntos
Plaquetas/efeitos dos fármacos , Quelantes/química , Tomografia por Emissão de Pósitrons , Anticorpos de Cadeia Única/química , Animais , Plaquetas/metabolismo , Artérias Carótidas/fisiopatologia , Cobre/química , Radioisótopos de Cobre/química , Diagnóstico por Imagem , Modelos Animais de Doenças , Citometria de Fluxo , Compostos Heterocíclicos com 1 Anel/química , Inflamação , Ligantes , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Ativação Plaquetária , Compostos Radiofarmacêuticos , Trombose/diagnóstico , Microtomografia por Raio-X
4.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089712

RESUMO

Despite advances in antithrombotic therapy, the risk of recurrent coronary/cerebrovascular ischemia or venous thromboembolism remains high. Dual pathway antithrombotic blockade, using both antiplatelet and anticoagulant therapy, offers the promise of improved thrombotic protection; however, widespread adoption remains tempered by substantial risk of major bleeding. Here, we report a dual pathway therapeutic capable of site-specific targeting to activated platelets and therapeutic enrichment at the site of thrombus growth to allow reduced dosing without compromised antithrombotic efficacy. We engineered a recombinant fusion protein, SCE5-TAP, which consists of a single-chain antibody (SCE5) that targets and blocks the activated GPIIb/IIIa complex, and tick anticoagulant peptide (TAP), a potent direct inhibitor of activated factor X (FXa). SCE5-TAP demonstrated selective platelet targeting and inhibition of thrombosis in murine models of both carotid artery and inferior vena cava thrombosis, without a significant impact on hemostasis. Selective targeting to activated platelets provides an attractive strategy to achieve high antithrombotic efficacy with reduced risk of bleeding complications.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores do Fator Xa/administração & dosagem , Hemostasia/efeitos dos fármacos , Trombose/prevenção & controle , Animais , Proteínas de Artrópodes/administração & dosagem , Proteínas de Artrópodes/genética , Modelos Animais de Doenças , Voluntários Saudáveis , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/genética , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/genética , Trombose/etiologia
5.
Nat Commun ; 9(1): 525, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410422

RESUMO

Integrin-based therapeutics have garnered considerable interest in the medical treatment of inflammation. Integrins mediate the fast recruitment of monocytes and neutrophils to the site of inflammation, but are also required for host defense, limiting their therapeutic use. Here, we report a novel monoclonal antibody, anti-M7, that specifically blocks the interaction of the integrin Mac-1 with its pro-inflammatory ligand CD40L, while not interfering with alternative ligands. Anti-M7 selectively reduces leukocyte recruitment in vitro and in vivo. In contrast, conventional anti-Mac-1 therapy is not specific and blocks a broad repertoire of integrin functionality, inhibits phagocytosis, promotes apoptosis, and fuels a cytokine storm in vivo. Whereas conventional anti-integrin therapy potentiates bacterial sepsis, bacteremia, and mortality, a ligand-specific intervention with anti-M7 is protective. These findings deepen our understanding of ligand-specific integrin functions and open a path for a new field of ligand-targeted anti-integrin therapy to prevent inflammatory conditions.


Assuntos
Anticorpos Monoclonais/farmacologia , Inflamação/tratamento farmacológico , Antígeno de Macrófago 1/metabolismo , Terapia de Alvo Molecular/métodos , Animais , Sítios de Ligação , Ligante de CD40/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Inflamação/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Sepse/tratamento farmacológico
6.
Nanomedicine (Lond) ; 12(15): 1873-1889, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28703636

RESUMO

The unique chemical and functional properties of nanoparticles can be harnessed for the delivery of large quantities of various therapeutic biomolecules. Active targeting of nanoparticles by conjugating ligands that bind to target cells strongly facilitates accumulation, internalization into target cells and longer retention at the target site, with consequent enhanced therapeutic effects. Recombinant antibodies with high selectivity and availability for a vast range of targets will dominate the future. In this review, we systematically outline the tremendous progress in the conjugation of antibodies to nanoparticles and the clear advantages that recombinant antibodies offer in the therapeutic targeting of nanoparticles. The demonstrated flexibility of recombinant antibody coupling to nanoparticles highlights the bright future of this technology for modern therapeutic nanomedicine.


Assuntos
Anticorpos/química , Antineoplásicos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/química , Animais , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Ligantes , Nanomedicina , Proteínas Recombinantes/farmacologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia
7.
Front Cardiovasc Med ; 4: 74, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209618

RESUMO

Microvesicles (MVs) circulating in the blood are small vesicles (100-1,000 nm in diameter) derived from membrane blebs of cells such as activated platelets, endothelial cells, and leukocytes. A growing body of evidence now supports the concept that platelet-derived microvesicles (PMVs), the most abundant MVs in the circulation, are important regulators of hemostasis, inflammation, and angiogenesis. Compared with healthy individuals, a large increase of circulating PMVs has been observed, particularly in patients with cardiovascular diseases. As observed in MVs from other parent cells, PMVs exert their biological effects in multiple ways, such as triggering various intercellular signaling cascades and by participating in transcellular communication by the transfer of their "cargo" of cytoplasmic components and surface receptors to other cell types. This review describes our current understanding of the potential role of PMVs in mediating hemostasis, inflammation, and angiogenesis and their consequences on the pathogenesis of cardiovascular diseases, such as atherosclerosis, myocardial infarction, and venous thrombosis. Furthermore, new developments of the therapeutic potential of PMVs for the treatment of cardiovascular diseases will be discussed.

8.
Theranostics ; 7(5): 1047-1061, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435447

RESUMO

Progress in pharmaceutical development is highly-dependent on preclinical in vivo animal studies. Small animal imaging is invaluable for the identification of new disease markers and the evaluation of drug efficacy. Here, we report for the first time the use of a three-dimensional fluorescence bioimager called FLuorescence Emission Computed Tomography (FLECT) for the detection of a novel recombinant fluoroprobe that is safe, easily prepared on a large scale and stably stored prior to scan. This novel fluoroprobe (Targ-Cy7) comprises a single-chain antibody-fragment (scFvTarg), which binds exclusively to activated-platelets, conjugated to a near-infrared (NIR) dye, Cy7, for detection. Upon mouse carotid artery injury, the injected fluoroprobe circulates and binds within the platelet-rich thrombus. This specific in vivo binding of the fluoroprobe to the thrombus, compared to its non-targeting control-fluoroprobe, is detected by the FLECT imager. The analyzed FLECT image quantifies the NIR signal and localizes it to the site of vascular injury. The detected fluorescence is further verified using a two-dimensional IVIS® Lumina scanner, where significant NIR fluorescence is detected in vivo at the thrombotic site, and ex vivo, at the injured carotid artery. Furthermore, fluorescence levels in various organs have also been quantified for biodistribution, with the highest fluoroprobe uptake shown to be in the injured artery. Subsequently, this live animal imaging technique is successfully employed to monitor the response of the induced thrombus to treatment over time. This demonstrates the potential of using longitudinal FLECT scanning to examine the efficacy of candidate drugs in preclinical settings. Besides intravascular thrombosis, we have shown that this non-invasive FLECT-imaging can also detect in vivo pulmonary embolism. Overall, this report describes a novel fluorescence-based preclinical imaging modality that uses an easy-to-prepare and non-radioactive recombinant fluoroprobe. This represents a unique tool to study mechanisms of thromboembolic diseases and it will strongly facilitate the in vivo testing of antithrombotic drugs. Furthermore, the non-radiation nature, low-cost, high sensitivity, and the rapid advancement of optical scanning technologies make this fluorescence imaging an attractive development for future clinical applications.


Assuntos
Plaquetas/metabolismo , Corantes Fluorescentes/farmacocinética , Embolia Pulmonar/diagnóstico por imagem , Trombose/diagnóstico por imagem , Tomografia Computadorizada de Emissão/métodos , Animais , Modelos Animais de Doenças , Camundongos
9.
Theranostics ; 7(10): 2565-2574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819447

RESUMO

Rationale The early detection of primary tumours and metastatic disease is vital for successful therapy and is contingent upon highly specific molecular markers and sensitive, non-invasive imaging techniques. We hypothesized that the accumulation of activated platelets within tumours is a general phenomenon and thus represents a novel means for the molecular imaging of cancer. Here we investigate a unique single chain antibody (scFv), which specifically targets activated platelets, as a novel biotechnological tool for molecular imaging of cancer. Methods The scFvGPIIb/IIIa, which binds specifically to the activated form of the platelet integrin receptor GPIIb/IIIa present on activated platelets, was conjugated to either Cy7, 64Cu or ultrasound-enhancing microbubbles. Using the Cy7 labelled scFvGPIIb/IIIa, fluorescence imaging was performed in mice bearing four different human tumour xenograft models; SKBr3, MDA-MB-231, Ramos and HT-1080 cells. Molecular imaging via PET and ultrasound was performed using the scFvGPIIb/IIIa-64Cu and scFvGPIIb/IIIa-microbubbles, respectively, to further confirm specific targeting of scFvGPIIb/IIIa to activated platelets in the tumour stroma. Results Using scFvGPIIb/IIIa we successfully showed specific targeting of activated platelets within the microenvironment of human tumour xenografts models via three different molecular imaging modalities. The presence of platelets within the tumour microenvironment, and as such their relevance as a molecular target epitope in cancer was further confirmed via immunofluorescence of human tumour sections of various cancer types, thus validating the translational importance of our novel approach to human disease. Conclusion Our study provides proof of concept for imaging and localization of tumours by molecular targeting activated platelets. We illustrate the utility of a unique scFv as a versatile biotechnological tool which can be conjugated to various contrast agents for molecular imaging of cancer using three different imaging modalities. These findings warrant further development of this activated platelet specific scFvGPIIb/IIIa, potentially as a universal marker for cancer diagnosis and ultimately for drug delivery in an innovative theranostic approach.


Assuntos
Plaquetas/química , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imagem Óptica/métodos , Ativação Plaquetária , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Anticorpos de Cadeia Única/metabolismo
10.
Theranostics ; 7(13): 3192-3206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900504

RESUMO

One of the major hurdles in intravenous regenerative cell therapy is the low homing efficiency to the area where these cells are needed. To increase cell homing toward areas of myocardial damage, we developed a bispecific tandem single-chain antibody (Tand-scFvSca-1+GPIIb/IIIa) that binds with high affinity to activated platelets via the activated glycoprotein (GP)IIb/IIIa receptor, and to a subset of peripheral blood mononuclear cells (PBMC) which express the stem cell antigen-1 (Sca-1) receptor. Methods: The Tand-scFvSca-1+GPIIb/IIIa was engineered, characterized and tested in a mouse model of ischemia-reperfusion (IR) injury applying left coronary artery occlusion for 60 min. Fluorescence cell tracking, cell infiltration studies, echocardiographic and histological analyses were performed. Results: Treatment of mice undergoing myocardial infarction with targeted-PBMCs led to successful cell delivery to the ischemic-reperfused myocardium, followed by a significant decrease in infiltration of inflammatory cells. Homing of targeted-PBMCs as shown by fluorescence cell tracking ultimately decreased fibrosis, increased capillary density, and restored cardiac function 4 weeks after ischemia-reperfusion injury. Conclusion: Tand-scFvSca-1+GPIIb/IIIa is a promising candidate to enhance therapeutic cell delivery in order to promote myocardial regeneration and thereby preventing heart failure.


Assuntos
Plaquetas/metabolismo , Testes de Função Cardíaca , Leucócitos Mononucleares/transplante , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Células CHO , Adesão Celular , Cricetinae , Cricetulus , Citocinas/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/patologia , Leucócitos/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Neovascularização Fisiológica , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Anticorpos de Cadeia Única/metabolismo , Remodelação Ventricular
11.
Nat Commun ; 8(1): 75, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706202

RESUMO

Atherosclerosis is a major cause of mortality and morbidity, which is mainly driven by complications such as myocardial infarction and stroke. These complications are caused by thrombotic arterial occlusion localized at the site of high-risk atherosclerotic plaques, of which early detection and therapeutic stabilization are urgently needed. Here we show that near-infrared autofluorescence is associated with the presence of intraplaque hemorrhage and heme degradation products, particularly bilirubin by using our recently created mouse model, which uniquely reflects plaque instability as seen in humans, and human carotid endarterectomy samples. Fluorescence emission computed tomography detecting near-infrared autofluorescence allows in vivo monitoring of intraplaque hemorrhage, establishing a preclinical technology to assess and monitor plaque instability and thereby test potential plaque-stabilizing drugs. We suggest that near-infrared autofluorescence imaging is a novel technology that allows identification of atherosclerotic plaques with intraplaque hemorrhage and ultimately holds promise for detection of high-risk plaques in patients.Atherosclerosis diagnosis relies primarily on imaging and early detection of high-risk atherosclerotic plaques is important for risk stratification of patients and stabilization therapies. Here Htun et al. demonstrate that vulnerable atherosclerotic plaques generate near-infrared autofluorescence that can be detected via emission computed tomography.


Assuntos
Aterosclerose/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Heme/metabolismo , Hemorragia/diagnóstico por imagem , Imagem Óptica/métodos , Placa Aterosclerótica/diagnóstico por imagem , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Bilirrubina/sangue , Biliverdina/sangue , Biomarcadores/sangue , Biomarcadores/química , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Endarterectomia das Carótidas , Heme/química , Hemorragia/sangue , Hemorragia/patologia , Humanos , Camundongos , Imagem Óptica/instrumentação , Placa Aterosclerótica/sangue , Placa Aterosclerótica/patologia , Fatores de Risco , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos
12.
Hypertension ; 69(2): 323-331, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956575

RESUMO

Overactivation of renal sympathetic nervous system and low-grade systemic inflammation are common features of hypertension. Renal denervation (RDN) reduces sympathetic activity in patients with resistant hypertension. However, its effect on systemic inflammation has not been examined. We prospectively investigated the effect of RDN on monocyte activation and inflammation in patients with uncontrolled hypertension scheduled for RDN. Ambulatory blood pressure, monocyte, and monocyte subset activation and inflammatory markers were assessed at baseline, 3 months, and 6 months after procedure in 42 patients. RDN significantly lowered blood pressure at 3 months (150.5±11.2/81.0±11.2 mm Hg to 144.7±11.8/77.9±11.0 mm Hg), which was sustained at 6 months (144.7±13.8/78.6±11.0 mm Hg). Activation status of monocytes significantly decreased at 3 months (P<0.01) and 6 months (P<0.01) after the procedure. In particular, classical monocyte activation was reduced at 6 months (P<0.05). Similarly, we observed a reduction of several inflammatory markers, including monocyte-platelet aggregates (3 months, P<0.01), plasma monocyte chemoattractant protein-1 levels (3 months, P<0.0001; 6 months, P<0.05), interleukin-1ß (3 months, P<0.05; 6 months, P<0.05), tumor necrosis factor-α (3 months, P<0.01; 6 months, P<0.05), and interleukin-12 (3 months, P<0.01; 6 months, P<0.05). A positive correlation was observed between muscle sympathetic nerve activity and monocyte activation before and after the procedure. These results indicate that inhibition of sympathetic activity via RDN is associated with a reduction of monocyte activation and other inflammatory markers in hypertensive patients. These findings point to a direct interaction between the inflammatory and sympathetic nervous system, which is of central relevance for the understanding of beneficial cardiovascular effects of RDN.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/cirurgia , Rim/inervação , Monócitos/metabolismo , Agregação Plaquetária/fisiologia , Simpatectomia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Monitorização Ambulatorial da Pressão Arterial , Ablação por Cateter , Feminino , Citometria de Fluxo , Seguimentos , Humanos , Hipertensão/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Adulto Jovem
13.
Theranostics ; 6(5): 726-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022419

RESUMO

RATIONALE: Myocardial infarction and stroke are leading causes of morbidity/mortality. The typical underlying pathology is the formation of thrombi/emboli and subsequent vessel occlusion. Systemically administered fibrinolytic drugs are the most effective pharmacological therapy. However, bleeding complications are relatively common and this risk as such limits their broader use. Furthermore, a rapid non-invasive imaging technology is not available. Thereby, many thrombotic events are missed or only diagnosed when ischemic damage has already occurred. OBJECTIVE: Design and preclinical testing of a novel 'theranostic' technology for the rapid non-invasive diagnosis and effective, bleeding-free treatment of thrombosis. METHODS AND RESULTS: A newly created, innovative theranostic microbubble combines a recombinant fibrinolytic drug, an echo-enhancing microbubble and a recombinant thrombus-targeting device in form of an activated-platelet-specific single-chain antibody. After initial in vitro proof of functionality, we tested this theranostic microbubble both in ultrasound imaging and thrombolytic therapy using a mouse model of ferric-chloride-induced thrombosis in the carotid artery. We demonstrate the reliable highly sensitive detection of in vivo thrombi and the ability to monitor their size changes in real time. Furthermore, these theranostic microbubbles proofed to be as effective in thrombolysis as commercial urokinase but without the prolongation of bleeding time as seen with urokinase. CONCLUSIONS: We describe a novel theranostic technology enabling simultaneous diagnosis and treatment of thrombosis, as well as monitoring of success or failure of thrombolysis. This technology holds promise for major progress in rapid diagnosis and bleeding-free thrombolysis thereby potentially preventing the often devastating consequences of thrombotic disease in many patients.


Assuntos
Microbolhas , Nanomedicina Teranóstica/métodos , Terapia Trombolítica/métodos , Trombose/diagnóstico por imagem , Trombose/terapia , Ultrassonografia/métodos , Animais , Tempo de Sangramento , Plaquetas/imunologia , Modelos Animais de Doenças , Fibrinolíticos/administração & dosagem , Fibrinolíticos/farmacocinética , Camundongos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacocinética , Resultado do Tratamento
14.
J Exp Med ; 212(2): 129-37, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25646267

RESUMO

Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.


Assuntos
Plaquetas/efeitos dos fármacos , Oligonucleotídeos Fosforotioatos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Oclusão Vascular Mesentérica/tratamento farmacológico , Oclusão Vascular Mesentérica/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/metabolismo , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ligação Proteica , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Embolia Pulmonar/patologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Immunol Lett ; 130(1-2): 82-8, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20005897

RESUMO

The major human Fc receptor, huFcgammaRIIa, is implicated in the development of autoimmune arthritis in humans but until recently has not been studied in mouse models. We evaluated potential roles of FcgammaRIIa by using transgenic mice expressing the receptor. We examined two models of induced autoimmune arthritis pristane-induced arthritis (PIA) and collagen-induced arthritis (CIA) as well as the anti-collagen-II antibody-induced arthritis (CAIA) model. In the induced arthritis models PIA and CIA, the transgenic mice developed a more severe arthritis than the other arthritis-prone SJL or DBA1 mice. Interestingly, anti-collagen-II antibodies were elevated in PIA in the susceptible mice. In the CIA model, the highly susceptible transgenic mouse had IgG subclass levels equivalent to the unaffected and disease resistant C57BL/6 mouse strain implying that the FcgammaRIIa lowers the threshold of IgG dependent leukocyte activation. This is consistent with the greatly enhanced sensitivity of the FcgammaRIIa transgenic mice to CAIA which clearly indicates a role for the receptor at least at the inflammatory effector cell level. Other roles for huFcgammaRIIa or other gene products in the development of autoimmunity cannot be ruled out however, especially as the mice exhibited elevated Th1 or Th17 CD4 T cells in the draining lymph nodes.


Assuntos
Artrite/imunologia , Doenças Autoimunes/imunologia , Interleucina-17/imunologia , Receptores de IgG/imunologia , Animais , Artrite/genética , Doenças Autoimunes/genética , Modelos Animais de Doenças , Citometria de Fluxo , Predisposição Genética para Doença , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Transgênicos , Receptores de IgG/genética , Linfócitos T/imunologia , Regulação para Cima
16.
Influenza Other Respir Viruses ; 3(4): 177-82, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19627375

RESUMO

BACKGROUND: The best form of protection against influenza is high-titred virus-neutralizing antibody specific for the challenge strain. However, this is not always possible to achieve by vaccination due to the need for predicting the emerging virus, whether it be a drift variant of existing human endemic influenza type A subtypes or the next pandemic virus, for incorporation into the vaccine. By activating additional arms of the immune system to provide heterosubtypic immunity, that is immunity active against all viruses of type A influenza regardless of subtype or strain, it should be possible to provide significant benefit in situations where appropriate antibody responses are not achieved. Although current inactivated vaccines are unable to induce heterosubtypic CD8(+) T cell immunity, we have shown that lipopeptides are particularly efficient in this regard. OBJECTIVES: To examine the role of vaccine-induced CD8(+) T cells in altering the course of disease due to highly virulent H1N1 influenza virus in the mouse model. METHODS: The induction of influenza-specific CD8(+) T cells following intranasal inoculation with lipopeptide vaccine was assessed by intracellular cytokine staining (ICS) and the capacity of these cells to reduce viral loads in the lungs and to protect against death after viral challenge was determined. RESULTS AND CONCLUSIONS: We show that CD8(+) T cells are induced by a single intranasal vaccination with lipopeptide, they remain at substantial levels in the lungs and are efficiently boosted upon challenge with virulent virus to provide late control of pulmonary viral loads. Vaccinated mice are not only protected from death but remain active, indicative of less severe disease despite significant weight loss.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Lipopeptídeos/imunologia , Administração Intranasal , Animais , Peso Corporal , Citocinas/biossíntese , Vacinas contra Influenza/administração & dosagem , Lipopeptídeos/administração & dosagem , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Análise de Sobrevida
17.
Int Immunol ; 18(2): 291-300, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16361310

RESUMO

CD45 is a receptor tyrosine phosphatase essential for TCR signaling. One isoform, CD45RB, is down-regulated in memory cells and targeting CD45RB with a specific antibody has been shown to inhibit graft rejection. Its role in immunity to infection, however, has not been tested. Here, we report the effect of anti-CD45RB antibody treatment on the induction of anti-influenza CD8+ T cells and viral clearance. Anti-CD45RB-treated mice had delayed pulmonary viral clearance compared with untreated mice whose infection was completely cleared by day 8 post-infection. In anti-CD45RB-treated mice, the total CD4+ and CD8+ T cell numbers in both the lungs and mediastinal nodes were substantially reduced at days 5 and 8; this effect was less marked for the spleen. CD8+ T cells specific for influenza virus were also reduced compared with the control group in all three organs at day 8. By day 11, when both treated and control groups showed no virus remaining in the lungs, specific CD8+ T cell numbers were at similar low levels. Homing to lymph nodes and lung of dye-labeled T cells was greatly inhibited (by >80%) by anti-CD45RB treatment. This reduced homing corresponded with reduced CD62L and beta1-integrin expression in both uninfected and infected mice. Since CD62L plays a critical role in homing lymphocytes to lymph nodes, and high levels of CD62L and alpha4beta1-integrin are expressed by lymphocytes that home to bronchus-associated lymphoid tissue, we suggest that reduced expression of these molecules is a key explanation for the delay in immune responses.


Assuntos
Influenza Humana/imunologia , Antígenos Comuns de Leucócito/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Influenza Humana/terapia , Influenza Humana/virologia , Selectina L/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA