Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082988

RESUMO

To study transcranial direct current stimulation (tDCS) and its effect on the brain, it could be useful to predict the distribution of the electric field induced in the brain with given tDCS parameters. As a solution, simulation with realistic computational models using magnetic resonance images (MRIs) have been widely used in the fields. With the recent advance of deep learning-based segmentation techniques of the brain, questions have been raised about if tDCS-induced electric field is affected by the deep brain structures. This study aimed to investigate the effect of the deep brain structure modeling on the induced electric field. To this end, we generated models with and without the deep brain structures by using an open MRI dataset comprising tDCS parameters, electric field simulation results and in-vivo intracranial recordings in the deep brain structures. We investigated the difference between the simulation results of the two models with a statistical analysis. Our results indicated that tDCS-induced electric fields and current flow in the brain are significantly different when the deep brain structures are considered.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Simulação por Computador , Imageamento por Ressonância Magnética/métodos , Cabeça
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083191

RESUMO

Transcutaneous spinal electrical stimulation (tSCS) is a non-invasive neuromodulation approach using a low intensity direct current. Recent developments in the technique have opened the possibility that tSCS can help restore motor function after spinal cord injury (SCI). However, the exact mechanism of action tSCS has on the spinal circuits is still unknown. Due to the complexity of experimental synthesis in a human model to delineate the mechanisms, models that link the stimulation paradigm and circuit behaviors are advantageous. Thus, this study aims to simulate the underlying changes in motor circuit firing rates in response to external stimuli induced by tSCS. Serial stimulations combining a high-fidelity finite element model with the human torso and spinal cord with a lumped motor neuron model is constructed. The parameters for both components of the model were derived from previous studies. We focused our analysis on a lumped motor neuron model that describes sustained firing behavior of the motor neuron driven primarily by persistent inward current (PIC), a signature behavior of the motor neuron after SCI. Modulation of the PIC behaviors was achieved by stimulating voltage-dependent calcium and sodium channels in the dendrite using a tSCS-induced electric field (E-field) expressed at different a spatial locations of the motor neuron in the gray matter. The PIC behaviors of spinal motor neurons in the left ventral horn were suppressed, while for the most part invariant in the right ventral horn. These initial simulations will provide a steppingstone for future examinations that incorporate additional neuronal models of inhibitory and excitatory interneurons to access the circuit-level effect of spinal stimulation.


Assuntos
Corpo Humano , Traumatismos da Medula Espinal , Humanos , Neurônios Motores/fisiologia , Traumatismos da Medula Espinal/terapia , Interneurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA