Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 25(6): 1922-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21368105

RESUMO

Pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of vascular remodeling in pulmonary arterial hypertension (PAH) for which cellular and molecular mechanisms are poorly understood. The goal of our study was to determine the role of mammalian target of rapamycin (mTOR) in PAVSM cell proliferation, a major pathological manifestation of vascular remodeling in PAH. Our data demonstrate that chronic hypoxia promoted mTOR(Ser-2481) phosphorylation, an indicator of mTOR intrinsic catalytic activity, mTORC1-specific S6 and mTORC2-specific Akt (Ser-473) phosphorylation, and proliferation of human and rat PAVSM cells that was inhibited by siRNA mTOR. PAVSM cells derived from rats exposed to chronic hypoxia (VSM-H cells) retained increased mTOR(Ser-2481), S6, Akt (Ser-473) phosphorylation, and DNA synthesis compared to cells from normoxia-exposed rats. Suppression of mTORC2 signaling with siRNA rictor, or inhibition of mTORC1 signaling with rapamycin and metformin, while having little effect on other complex activities, inhibited VSM-H and chronic hypoxia-induced human and rat PAVSM cell proliferation. Collectively, our data demonstrate that up-regulation of mTOR activity and activation of both mTORC1 and mTORC2 are required for PAVSM cell proliferation induced by in vitro and in vivo chronic hypoxia and suggest that mTOR may serve as a potential therapeutic target to inhibit vascular remodeling in PAH.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Consumo de Oxigênio , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 299(1): L25-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20382746

RESUMO

Severe asthma is characterized by increased airway smooth muscle (ASM) mass due, in part, to ASM cell growth and contractile protein expression associated with increased protein synthesis. Little is known regarding the combined effects of mitogens and interferons on ASM cytosolic protein synthesis. We demonstrate that human ASM mitogens including PDGF, EGF, and thrombin stimulate protein synthesis. Surprisingly, pleiotropic cytokines IFN-beta and IFN-gamma, which inhibit ASM proliferation, also increased cytosolic protein content in ASM cells. Thus IFN-beta alone significantly increased protein synthesis by 1.62 +/- 0.09-fold that was further enhanced by EGF to 2.52 +/- 0.17-fold. IFN-gamma alone also stimulated protein synthesis by 1.91 +/- 0.15-fold; treatment of cells with PDGF, EGF, and thrombin in the presence of IFN-gamma stimulated protein synthesis by 2.24 +/- 0.3-, 1.25 +/- 0.17-, and 2.67 +/- 0.34-fold, respectively, compared with growth factors alone. The mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) inhibition with rapamycin inhibited IFN- and EGF-induced protein synthesis, suggesting that IFN-induced protein synthesis is modulated by mTOR/S6K1 activation. Furthermore, overexpression of tumor suppressor protein tuberous sclerosis complex 2 (TSC2), which is an upstream negative regulator of mTOR/S6K1 signaling, also inhibited mitogen-induced protein synthesis in ASM cells. IFN-beta and IFN-gamma stimulated miR143/145 microRNA expression and increased SM alpha-actin accumulation but had little effect on ASM cell size. In contrast, EGF increased ASM cell size but had little effect on miR143/145 expression. Our data demonstrate that both IFNs and mitogens stimulate protein synthesis but have differential effects on cell size and contractile protein expression and suggest that combined effects of IFNs and mitogens may contribute to ASM cell growth, contractile protein expression, and ASM remodeling in asthma.


Assuntos
Interferons/farmacologia , Mitógenos/farmacologia , Músculo Liso/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Sistema Respiratório/metabolismo , Animais , Asma/patologia , Asma/fisiopatologia , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso/citologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sistema Respiratório/anatomia & histologia , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Trombina/farmacologia
3.
Mol Pharmacol ; 73(3): 778-88, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18094073

RESUMO

Lymphangioleiomyomatosis (LAM), a rare pulmonary disorder, manifests as an abnormal neoplastic growth of smooth muscle-like cells within the lungs. Mutational inactivation of tumor suppressor tuberous sclerosis complex 2 (TSC2) in LAM constitutively activates the mammalian target of rapamycin (mTOR)/p70 S6 kinase 1 (S6K1) signaling pathway and promotes neoplastic growth of LAM cells. In many cell types, type I interferon beta (IFNbeta) inhibits proliferation and induces apoptosis through signal transducers and activators of transcription (STAT)-dependent and STAT-independent signaling pathways, one of which is the mTOR/S6K1 signaling pathway. Our study shows that IFNbeta is expressed in LAM tissues and LAM-derived cell cultures; however, IFNbeta attenuates LAM-derived cell proliferation only at high concentrations, 100 and 1000 U/ml (IC(50) value for IFNbeta is 20 U/ml compared with 1 U/ml for normal human mesenchymal cells, human bronchus fibroblasts and human airway smooth muscle cells). Likewise, IFNbeta only attenuates proliferation of smooth muscle TSC2-null ELT3 cells. Analysis of IFNbeta signaling in LAM cells showed expression of IFNbeta receptor alpha (IFNbetaRalpha) and IFNbetaRbeta, activation and nuclear translocation of STAT1, and phosphorylation of STAT3 and p38 mitogen-activated protein kinase (MAPK), but IFNbeta had little effect on S6K1 activity. However, the re-expression of TSC2 or inhibition of mTOR/S6K1 with rapamycin (sirolimus) augmented antiproliferative effects of IFNbeta in LAM and TSC2-null ELT3 cells. Our study demonstrates that IFNbeta-dependent activation of STATs and p38 MAPK is not sufficient to fully inhibit proliferation of cells with TSC2 dysfunction and that TSC2-dependent inhibition of mTOR/S6K1 cooperates with IFNbeta in inhibiting human LAM and TSC2-null ELT3 cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Interferon beta/farmacologia , Leiomioma/patologia , Linfangioleiomiomatose/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias Uterinas/patologia , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Concentração Inibidora 50 , Interferon beta/metabolismo , Linfangioleiomiomatose/patologia , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Mutação , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos , Receptores de Interferon/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Transdução de Sinais , Sirolimo/farmacologia , Estatística como Assunto , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética
4.
FASEB J ; 19(3): 428-30, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15746183

RESUMO

Airway smooth muscle (ASM) hypertrophy and hyperplasia, important pathological features in chronic severe asthma, likely contribute to irreversible airflow obstruction. Despite considerable research effort, the precise cellular mechanisms that modulate ASM growth remain unknown. Src, a nonreceptor tyrosine kinase proto-oncogene, reportedly modulates cell proliferative responses to growth factors, contractile agonists, and inflammatory mediators. Here, we show that Src activation is required for human ASM mitogenesis and motility. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and thrombin induce rapid activation of Src, and inhibition of Src induces a concentration-dependent abrogation of PDGF-, EGF-, and thrombin-induced ASM cell proliferation. Src immunoprecipitates had associated phosphatidylinositol 3-kinase, or PI3K, activation in response to PDGF and thrombin but not EGF. Further, Src activation is both necessary and sufficient for the stimulation of DNA synthesis as demonstrated by dominant negative Src inhibition of PDGF-, EGF-, and thrombin-induced DNA synthesis. Human ASM cell migration was also attenuated by transfection of cells with dominant negative Src. Further, expression of constitutively active Src promoted cell migration. Collectively, these data demonstrate that Src modulates human ASM cell proliferation and migration, suggesting that Src may play an important role in promoting ASM cell growth and migration that occur in airway remodeling found in asthma and chronic obstructive pulmonary disease, or COPD.


Assuntos
Divisão Celular/fisiologia , Movimento Celular/fisiologia , Músculo Liso/citologia , Traqueia/citologia , Quinases da Família src/fisiologia , Asma/enzimologia , Asma/patologia , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Expressão Gênica , Humanos , Immunoblotting , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proto-Oncogene Mas , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/patologia , Proteínas Recombinantes de Fusão , Trombina/farmacologia , Transfecção , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
5.
Am J Respir Cell Mol Biol ; 34(4): 473-80, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16388022

RESUMO

The loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle-like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine the role of tumor suppressor TSC2 in the neoplastic potential of LAM cells. We show that primary cultures of human LAM cells exhibit increased migratory activity and invasiveness, which is abolished by TSC2 re-expression. We found that TSC2 also inhibits cell migration through its N-terminus, independent of its GTPase-activating protein activity. LAM cells show increased stress fiber and focal adhesion formation, which is attenuated by TSC2 re-expression. The small GTPase RhoA is activated in LAM cells compared with normal human mesenchymal cells. Pharmacologic inhibition of Rho activity abrogates LAM cell migration; RhoA activity was also abolished by TSC2 re-expression or TSC1 knockdown with specific siRNA. These data demonstrate that TSC2 controls cell migration through its N-terminus by associating with TSC1 and regulating RhoA activity, suggesting that TSC2 may play a critical role in modulating cell migration and invasiveness, which contributes to the pathobiology of LAM.


Assuntos
Movimento Celular , Linfangioleiomiomatose/patologia , Miócitos de Músculo Liso/patologia , Proteínas Supressoras de Tumor/fisiologia , Adesões Focais , Humanos , Mesoderma/patologia , Invasividade Neoplásica , RNA Interferente Pequeno/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA