Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Chembiochem ; 25(1): e202300625, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830893

RESUMO

As the world moves towards net-zero carbon emissions, the development of sustainable chemical manufacturing processes is essential. Within manufacturing, purification by distillation is often used, however this process is energy intensive and methods that could obviate or reduce its use are desirable. Developed herein is an alternative, oxidative biocatalytic approach that enables purification of alkyl monoglucosides (essential bio-based surfactant components). Implementing an immobilised engineered alcohol oxidase, a long-chain alcohol by-product derived from alkyl monoglucoside synthesis (normally removed by distillation) is selectively oxidised to an aldehyde, conjugated to an amine resin and then removed by simple filtration. This affords recovery of the purified alkyl monoglucoside. The approach lays a blueprint for further development of sustainable alkylglycoside purification using biocatalysis and, importantly, for refining other important chemical feedstocks that currently rely on distillation.


Assuntos
Álcoois , Aldeídos , Oxirredução , Biocatálise
2.
Chemistry ; 29(1): e202202599, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36134621

RESUMO

Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the 'open' conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Ligação Proteica , Domínios Proteicos , Simulação de Dinâmica Molecular , Polissacarídeos , Sítios de Ligação , Glicoproteína da Espícula de Coronavírus/química
3.
Org Biomol Chem ; 20(47): 9469-9489, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36408761

RESUMO

Analogues of the canonical nucleosides have a longstanding presence and proven capability within medicinal chemistry and drug discovery research. The synthesis reported herein successfully replaces furanose oxygen with CF2 and CHF in pyrimidine nucleosides, granting access to an alternative pharmacophore space. Key diastereoselective conjugate addition and fluorination methodologies are developed from chiral pool materials, establishing a robust gram-scale synthesis of 6'-(R)-monofluoro- and 6'-gem-difluorouridines. Vital intermediate stereochemistries are confirmed using X-ray crystallography and NMR analysis, providing an indicative conformational preference for these fluorinated carbanucleosides. Utilising these 6'-fluorocarbauridine scaffolds enables synthesis of related cytidine, ProTide and 2'-deoxy analogues alongside a preliminary exploration of their biological capabilities in cancer cell viability assays. This synthetic blueprint offers potential to explore fluorocarbanucleoside scaffolds, indicatively towards triphosphate analogues and as building blocks for oligonucleotide synthesis.


Assuntos
Nucleosídeos , Nucleosídeos de Pirimidina , Nucleosídeos/farmacologia , Química Farmacêutica , Nucleosídeos de Pirimidina/farmacologia
4.
Org Biomol Chem ; 20(7): 1401-1406, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34806745

RESUMO

Analogues of the canonical nucleosides required for nucleic acid synthesis have a longstanding presence and proven capability within antiviral and anticancer research. 4'-Thionucleosides, that incorporate bioisosteric replacement of furanose oxygen with sulfur, represent an important chemotype within this field. Established herein is synthetic capability towards a common 4-thioribose building block that enables access to thio-ribo and thio-arabino pyrimidine nucleosides, alongside their 4'-sulfinyl derivatives. In addition, this building block methodology is templated to deliver 4'-thio and 4'-sulfinyl analogues of the established anticancer drug gemcitabine. Cytotoxic capability of these new analogues is evaluated against human pancreatic cancer and human primary glioblastoma cell lines, with observed activities ranging from low µM to >200 µM; explanation for this reduced activity, compared to established nucleoside analogues, is yet unclear. Access to these chemotypes, with thiohemiaminal linkages, will enable a wider exploration of purine and triphosphate analogues and the application of such materials for potential resistance towards relevant hydrolytic enzymes within nucleic acid biochemistries.


Assuntos
Nucleosídeos
5.
Biochem Biophys Res Commun ; 534: 485-490, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239166

RESUMO

To identify drugs that could potentially be used to treat infection with SARS-CoV-2, a high throughput 384-well assay was developed to measure the binding of the receptor binding domain (RBD) of the viral S1 protein to its main receptor, angiotensin converting enzyme 2 (ACE2). The RBD was fused to both a HiBIT tag and an IL6 secretion signal to enable facile collection from the cell culture media. The addition of culture media containing this protein, termed HiBIT-RBD, to cells expressing ACE2 led to binding that was specific to ACE2 and both time and concentration dependant, Binding could be inhibited by both RBD expressed in E. coli and by a full length S1 - Fc fusion protein (Fc-fused S1) expressed in eukaryotic cells. The mutation of residues that are known to play a role in the interaction of RBD with ACE2 also reduced binding. This assay may be used to identify drugs which inhibit the viral uptake into cells mediated by binding to ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Luciferases/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Antivirais/metabolismo , Antivirais/uso terapêutico , Sítios de Ligação/genética , COVID-19/metabolismo , COVID-19/virologia , Humanos , Luciferases/genética , Nanotecnologia/métodos , Ligação Proteica , Domínios Proteicos , Receptores Virais/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Tratamento Farmacológico da COVID-19
6.
Glycoconj J ; 38(1): 35-43, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411076

RESUMO

Cells undergoing hypoxia experience intense cytoplasmic calcium (Ca2+) overload. High concentrations of intracellular calcium ([Ca2+]i) can trigger cell death in the neural tissue, a hallmark of stroke. Neural Ca2+ homeostasis involves regulation by the Na+/Ca2+ exchanger (NCX). Previous data published by our group showed that a product of the enzymatic depolymerization of heparin by heparinase, the unsaturated trisulfated disaccharide (TD; ΔU, 2S-GlcNS, 6S), can accelerate Na+/Ca2+ exchange via NCX, in hepatocytes and aorta vascular smooth muscle cells. Thus, the objective of this work was to verify whether TD could act as a neuroprotective agent able to prevent neuronal cell death by reducing [Ca2+]i. Pretreatment of N2a cells with TD reduced [Ca2+]i rise induced by thapsigargin and increased cell viability under [Ca2+]I overload conditions and in hypoxia. Using a murine model of stroke, we observed that pretreatment with TD decreased cerebral infarct volume and cell death. However, when mice received KB-R7943, an NCX blocker, the neuroprotective effect of TD was abolished, strongly suggesting that this neuroprotection requires a functional NCX to happen. Thus, we propose TD-NCX as a new therapeutic axis for the prevention of neuronal death induced by [Ca2+]i overload.


Assuntos
Dissacarídeos/farmacologia , Heparina/análogos & derivados , AVC Isquêmico/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissacarídeos/química , Heparina/química , Heparina/farmacologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/química , Tapsigargina/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
7.
Mar Drugs ; 19(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916819

RESUMO

Only palliative therapeutic options exist for the treatment of Alzheimer's Disease; no new successful drug candidates have been developed in over 15 years. The widely used clinical anticoagulant heparin has been reported to exert beneficial effects through multiple pathophysiological pathways involved in the aetiology of Alzheimer's Disease, for example, amyloid peptide production and clearance, tau phosphorylation, inflammation and oxidative stress. Despite the therapeutic potential of heparin as a multi-target drug for Alzheimer's disease, the repurposing of pharmaceutical heparin is proscribed owing to the potent anticoagulant activity of this drug. Here, a heterogenous non-anticoagulant glycosaminoglycan extract, obtained from the shrimp Litopenaeus vannamei, was found to inhibit the key neuronal ß-secretase, BACE1, displaying a more favorable therapeutic ratio compared to pharmaceutical heparin when anticoagulant activity is considered.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Glicosaminoglicanos/farmacologia , Penaeidae/metabolismo , Inibidores de Proteases/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Estabilidade Enzimática , Glicosaminoglicanos/isolamento & purificação , Humanos , Tempo de Tromboplastina Parcial , Inibidores de Proteases/isolamento & purificação , Tempo de Protrombina
8.
Mar Drugs ; 17(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100859

RESUMO

Therapeutic options for Alzheimer's disease, the most common form of dementia, are currently restricted to palliative treatments. The glycosaminoglycan heparin, widely used as a clinical anticoagulant, has previously been shown to inhibit the Alzheimer's disease-relevant ß-secretase 1 (BACE1). Despite this, the deployment of pharmaceutical heparin for the treatment of Alzheimer's disease is largely precluded by its potent anticoagulant activity. Furthermore, ongoing concerns regarding the use of mammalian-sourced heparins, primarily due to prion diseases and religious beliefs hinder the deployment of alternative heparin-based therapeutics. A marine-derived, heparan sulphate-containing glycosaminoglycan extract, isolated from the crab Portunus pelagicus, was identified to inhibit human BACE1 with comparable bioactivity to that of mammalian heparin (IC50 = 1.85 µg mL-1 (R2 = 0.94) and 2.43 µg mL-1 (R2 = 0.93), respectively), while possessing highly attenuated anticoagulant activities. The results from several structural techniques suggest that the interactions between BACE1 and the extract from P. pelagicus are complex and distinct from those of heparin.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Braquiúros/química , Ativação Enzimática/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Anticoagulantes/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Glicosaminoglicanos/química , Glicosaminoglicanos/isolamento & purificação
9.
Molecules ; 24(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426507

RESUMO

Nowadays, pharmaceutical heparin is purified from porcine and bovine intestinal mucosa. In the past decade there has been an ongoing concern about the safety of heparin, since in 2008, adverse effects associated with the presence of an oversulfated chondroitin sulfate (OSCS) were observed in preparations of pharmaceutical porcine heparin, which led to the death of patients, causing a global public health crisis. However, it has not been clarified whether OSCS has been added to the purified heparin preparation, or whether it has already been introduced during the production of the raw heparin. Using a combination of different analytical methods, we investigate both crude and final heparin products and we are able to demonstrate that the sulfated contaminants are intentionally introduced in the initial steps of heparin preparation. Furthermore, the results show that the oversulfated compounds are not structurally homogeneous. In addition, we show that these contaminants are able to bind to cells in using well known heparin binding sites. Together, the data highlights the importance of heparin quality control even at the initial stages of its production.


Assuntos
Anticoagulantes/isolamento & purificação , Sulfatos de Condroitina/isolamento & purificação , Contaminação de Medicamentos , Heparina/isolamento & purificação , Animais , Anticoagulantes/química , Bovinos , Sulfatos de Condroitina/química , Heparina/química , Heparina Liase/química , Humanos , Hidrólise , Mucosa Intestinal/química , Espectroscopia de Ressonância Magnética , Polissacarídeo-Liases/química , Controle de Qualidade , Suínos
10.
Biochem Soc Trans ; 46(3): 609-617, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29678952

RESUMO

Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides - heparan/chondroitin sulfate (HS/CS) - are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.


Assuntos
Morte Celular , Infecções por Flaviviridae/fisiopatologia , Flaviviridae/fisiologia , Interações Hospedeiro-Patógeno , Animais , Infecções por Flaviviridae/imunologia , Infecções por Flaviviridae/transmissão , Infecções por Flaviviridae/virologia , Humanos , Mosquitos Vetores , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA