Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
BMC Biotechnol ; 24(1): 40, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849776

RESUMO

BACKGROUND: This study compared the differences of microvesicles (MVs) and microvesicles-delivering Smad7 (Smad7-MVs) on macrophage M1 polarization and fibroblast differentiation in a model of Peyronie's disease (PD). METHODS: Overexpression of Smad7 in rat BMSCs was obtained by pCMV5-Smad7 transfection. MVs were collected from rat BMSCs using ultracentrifugation. In cells, 100 µg/mL of MVs or Smad7-MVs were used to treat the 100 ng/mL of lipopolysaccharide (LPS)-induced RAW264.7 cells or 10 ng/mL of recombinant transforming growth factor-ß1 (TGF-ß1)-induced fibroblasts. The pro-inflammatory cytokines and markers of M1 macrophages were measured in RAW264.7 cells, and the migration and markers of fibroblast differentiation were measured in fibroblasts. In rats, 50 µg of MVs or Smad7-MVs were used to treat the TGF-ß1-induced animals. The pathology of tunica albuginea (TA), the markers of M1 macrophages and fibroblast differentiation in the TA were measured. RESULTS: The MVs or Smad7-MVs treatment suppressed the LPS-induced macrophage M1 polarization and TGF-ß1-induced fibroblast differentiation. Moreover, the Smad7-MVs treatment decreased the fibroblast differentiation compared with the MVs treatment. In the TGF-ß1-induced TA of rats, MVs or Smad7-MVs treatment ameliorated the TA fibrosis by suppressing the macrophage M1 polarization and fibroblast differentiation. There was no significance on the M1-polarized macrophages between the MVs treatment and the Smad7-MVs treatment. Meanwhile, the Smad7-MVs treatment had an edge in terms of suppressing the fibroblast differentiation in the TGF-ß1-induced PD model compared with the MVs treatment. CONCLUSIONS: This study demonstrated that Smad7-MVs treatment had advantages over MVs treatment in suppressing of fibroblast differentiation in a model of PD.


Assuntos
Diferenciação Celular , Micropartículas Derivadas de Células , Modelos Animais de Doenças , Fibroblastos , Macrófagos , Induração Peniana , Proteína Smad7 , Fator de Crescimento Transformador beta1 , Animais , Induração Peniana/metabolismo , Induração Peniana/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Ratos , Masculino , Proteína Smad7/metabolismo , Proteína Smad7/genética , Camundongos , Micropartículas Derivadas de Células/metabolismo , Células RAW 264.7 , Fator de Crescimento Transformador beta1/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia
2.
Biochem Genet ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315264

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a leading kidney disease, clinically associated with proteinuria and progressive renal failure. The occurrence of this disease is partly related to gene mutations. We describe a single affected family member who presented with FSGS. We used high-throughput sequencing, sanger sequencing to identify the pathogenic mutations, and a systems genetics analysis in the BXD mice was conducted to explore the genetic regulatory mechanisms of pathogenic genes in the development of FSGS. We identified high urinary protein (++++) and creatinine levels (149 µmol/L) in a 29-year-old male diagnosed with a 5-year history of grade 2 hypertension. Histopathology of the kidney biopsy showed stromal hyperplasia at the glomerular segmental sclerosis and endothelial cell vacuolation degeneration. Whole-exome sequencing followed by Sanger sequencing revealed a heterozygous missense mutation (c.643C > T) in exon 2 of TRPC6, leading to the substitution of arginine with tryptophan at position 215 (p.Arg215Trp). Systems genetics analysis of the 53 BXD mice kidney transcriptomes identified Pygm as the upstream regulator of Trpc6. Those two genes are jointly involved in the regulation of FSGS mainly via Wnt and Hippo signaling pathways. We present a novel variant in the TRPC6 gene that causes FSGS. Moreover, our data suggested TRPC6 works with PYGM, as well as Wnt and Hippo signaling pathways to regulate renal function, which could guide future clinical prevention and targeted treatment for FSGS outcomes.

3.
J Cell Mol Med ; 27(14): 1947-1958, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37378426

RESUMO

Prostate cancer (PCa) has a certain degree of heritability, and metastasis occurs as cancer progresses. However, its underlying mechanism remains largely unknown. We sequenced four cases of cancer without metastasis, four metastatic cancer, and four benign hyperplasia tissues as controls. A total of 1839 damaging mutations were identified. Pathway analysis, gene clustering, and weighted gene co-expression network analysis were employed to find characteristics associated with metastasis. Chr19 had the most mutation density and 1p36 had the highest mutation frequency across the genome. These mutations occurred in 1630 genes, including the most frequently mutated genes TTN and PLEC, and dozens of metastasis-related genes, such as FOXA1, NCOA1, CD34, and BRCA2. Ras signalling and arachidonic acid metabolism were uniquely enriched in metastatic cancer. Gene programmes 10 and 11 showed the signatures indicating the occurrence of metastasis better. A module (135 genes) was specifically associated with metastasis. Of them, 67.41% reoccurred in program 10, with 26 genes further retained as the signature genes related to PCa metastasis, including AGR3, RAPH1, SOX14, DPEP1, and UBL4A. Our study provides new molecular perspectives on PCa metastasis. The signature genes and pathways could be served as potential therapeutic targets for metastasis or cancer progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , RNA-Seq , Neoplasias da Próstata/patologia , Perfilação da Expressão Gênica , Mutação , Sequência de Bases , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXB2/metabolismo
4.
Mol Plant Microbe Interact ; 36(5): 273-282, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36572969

RESUMO

Powdery mildew severely affects several important crops and cash plants. Disruption of mildew resistance locus O (MLO) genes elevates resistance against powdery mildew in several plants. However, whether rubber tree (Heveae brasiliensis) MLO proteins are linked to susceptibility remains unknown, owing to technical limitations in the genetic manipulation of this woody plant. A previous study showed that the H. brasiliensis MLO-like protein HbMLO12 demonstrates high amino acid sequence similarity with the known Arabidopsis MLO protein AtMLO12. In this study, we investigated whether HbMLO12 regulates susceptibility to powdery mildew. H. brasiliensis leaves take up exogenously synthesized double-stranded RNAs (dsRNAs), and foliar application of dsRNA homologous to HbMLO12 gene specifically induces HbMLO12 silencing in H. brasiliensis leaf tissues. Notably, HbMLO12 silencing inhibited fungal infection and elevated the immune response during interaction with the rubber tree powdery mildew fungus. Furthermore, the heterologous expression of HbMLO12 suppressed bacterial flg22- and fungal chitin-induced immune responses and enhanced bacterial infection in Arabidopsis. Our study provides evidence that HbMLO12 contributes to susceptibility to powdery mildew. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Hevea , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hevea/genética , Hevea/metabolismo , Ascomicetos/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética
5.
Cancer Sci ; 114(12): 4583-4595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752684

RESUMO

Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicina , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Neoplasias Renais/genética , Serina/metabolismo , Fatores de Transcrição
6.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139168

RESUMO

Plasma membrane H+-ATPases (PMAs) play an important role in the pathogenicity of pathogenic fungi. Lipid droplets are important storage sites for neutral lipids in fungal conidia and hyphae and can be used by plant pathogenic fungi for infection. However, the relationship between plasma membrane H+-ATPase, lipid droplets and virulence remains unclear. Here, we characterized a plasma membrane H+-ATPase, CsPMA2, that plays a key role in lipid droplet formation, appresorial development and virulence in C. siamense. Deletion of CsPMA2 impaired C. siamense conidial size, conidial germination, appressorial development and virulence but did not affect hyphal growth. ΔCsPMA2 increased the sensitivity of C. siamense to phytic acid and oxalic acid. CsPMA2 was localized to lipids on the plasma membrane and intracellular membrane. Deletion of CsPMA2 significantly inhibited the accumulation of lipid droplets and significantly affected the contents of some species of lipids, including 12 species with decreased lipid contents and 3 species with increased lipid contents. Furthermore, low pH can inhibit CsPMA2 expression and lipid droplet accumulation. Overall, our data revealed that the plasma membrane H+-ATPase CsPMA2 is involved in the regulation of lipid droplet formation and affects appressorial development and virulence in C. siamense.


Assuntos
Colletotrichum , Gotículas Lipídicas , Virulência , Gotículas Lipídicas/metabolismo , Proteínas Fúngicas/metabolismo , Lipídeos , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
7.
Fungal Genet Biol ; 158: 103649, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921997

RESUMO

In phytopathogenic fungi, the HOG MAPK pathway has roles in osmoregulation, fungicide sensitivity, and other processes. The ATF1/CREB-activating transcription factor Atf1 is a regulator that functions downstream of the HOG MAPK pathway. Here, we identified a gene, designated CsAtf1, that encodes a bZIP transcription factor in Colletotrichum siamense, which is the main pathogen that causes Colletotrichum leaf fall disease in rubber trees in China. CsAtf1 localizes to the nucleus. Its mRNA expression correlates positively with that of CsPbs2 and CsHog1 in the HOG MAPK pathway in response to activator (anisomycin), inhibitor (SB203580) and fludioxonil treatments. The CsAtf1 deletion mutant showed slightly retarded mycelial growth, small conidia, slow spore germination, and abnormal appressorium formation. This mutant showed the increased spore germination rate after fludioxonil treatment and more resistance to the fungicide fludioxonil than did the wild-type fungus. However, unlike deletion of Pbs2 or Hog1, which resulted in greater sensitivity to osmotic stress, the CsAtf1 deletion induced slightly increased resistance to osmotic stress and the cell wall stress response. The ΔCsAtf1 strain also exhibited significantly reduced virulence on rubber tree leaves. These data revealed that CsAtf1 plays a key role in the regulation of fludioxonil sensitivity and in pathogenicity regulation in C. siamense.


Assuntos
Colletotrichum , Hevea , Fatores de Transcrição de Zíper de Leucina Básica , Colletotrichum/genética , Dioxóis , Proteínas Fúngicas/genética , Doenças das Plantas , Pirróis , Virulência/genética
8.
Planta ; 255(2): 33, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997357

RESUMO

MAIN CONCLUSION: A putative powdery mildew effector can elicit defense responses including reactive oxygen species and callose accumulations in model plants Nicotiana benthamiana and Arabidopsis thaliana and host plant Hevea brasiliensis. Powdery mildew fungi cause severe diseases in many agricultural plants, such as the mildew fungus Erysiphe quercicola infecting the rubber tree (Hevea brasiliensis), causing latex yield losses. However, effectors of E. quercicola were rarely functionally characterized. In this study, we identified a highly specific candidate-secreted effector protein, EqCSEP04187, from E. quercicola. This putative effector is expressed at the late stage but not the early stage during infection. The constitutive expression of EqCSEP04187 in model plants Nicotiana benthamiana and Arabidopsis thaliana elicited defense responses, as did transient expression of EqCSEP04187 in protoplasts of H. brasiliensis. Introducing EqCSEP04187 into another H. brasiliensis-associated fungal pathogen, Colletotrichum gloeosporioides, inhibited H. brasiliensis infection, and infection by E. quercicola was decreased in the A. thaliana eds1 mutant expressing EqCSEP04187. Further analysis suggests that these reductions in infection were the consequences of EqCSEP04187 eliciting defense responses. Our study suggests that this putative effector has elicitor activity that can improve plant resistance.


Assuntos
Ascomicetos , Hevea , Doenças das Plantas , Imunidade Vegetal , Borracha , Árvores
9.
BMC Cancer ; 22(1): 1333, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539714

RESUMO

BACKGROUND: Globally, the burden of endometrial endometrioid carcinoma (EEC) increases annually. However, the histological grade of EEC remains unelucidated. We developed a novel model for predicting lymph node metastasis (LNM) in patients with endometrioid carcinoma (EC), which has not been well established. METHODS: A total of 344 patients with EEC were classified into training (n = 226) and validation (n = 118) cohorts. To develop a nomogram to predict LNM, independent predictors were defined using univariate and multivariate regression analyses. The calibration curve, area under the decision curve analysis (DCA), and receiver operating characteristic curve were used to evaluate the performance of the nomogram. RESULTS: Independent predictors of LNM in EC were identified in the univariate analysis, including mitosis; microcystic, elongated, and fragmented patterns; lymphovascular invasion (LVI); necrosis; and high-grade pattern. Mitosis, LVI, and high-grade pattern remained independent predictors of LNM in multivariate analysis. An LNM nomogram that was constructed by incorporating the five predictors showed reliable discrimination and calibration. DCA showed that the LNM nomogram scoring system had significant clinical application value. In addition, a high nomogram score (score > 150) was a significant prognosticator for survival in both LNM-positive and LNM-negative ECs. CONCLUSIONS: Our novel predictive model for LNM in patients with EC has the potential to assist surgeons in making optimal treatment decisions.


Assuntos
Carcinoma Endometrioide , Feminino , Humanos , Carcinoma Endometrioide/patologia , Metástase Linfática/patologia , Nomogramas , Análise Multivariada , Invasividade Neoplásica/patologia , Linfonodos/patologia
10.
Plant Dis ; 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35100840

RESUMO

Hevea brasiliensis is widely planted in tropical and subtropical regions and is the main source of natural rubber production. The growth of rubber trees is plagued by various leaf diseases, resulting in decreased rubber production. From January to March in 2020, a severe leaf spots disease on Hevea brasiliensis found in Agricultural Science Base in Haidian campus of Hainan University (20° 03' 31″ N, 110° 19' 07″ E), Haikou, Hainan province, China. Spots were only observed on the mature green rather than young and bronze-colored leaves. This symptom has never been reported on the leaves of Hevea brasiliensis. During the early stages of the disease, gray leaf spots were concentrated to the leaf margins, but later expanded forming irregular gray lesions with chlorotic edges (Figure 1A). Eventually, lesions became necrotic shot holed, and leaves curled, wilted, and dropped. Five small pieces were cut from the margin of spots from different infected leaves, and were surface disinfected with 75% alcohol three times for five seconds each time and 1% sodium hypochlorite solution (NaClO) for 60 s. After washing twice with sterile water, leaf pieces were placed in the center of plates with Potato Dextrose Agar (PDA) medium and incubated for one week at 28 °C. After 7 days, mycelium developed and colonies were single-spore cultured for further study. One of the strains labeled HN01 developed a yellowish-brown to reddish-brown pigment on PDA, and the colonies were gray and cottony. The colony and pigment feature very consistent with Stemphylium sp. (Figure 2) (Li et al. 2017). Conidiophore were solitary, transparent to pale, mostly 102.1-228.8 µm × 4.0-5.8 µm, with 2-3 septa and apical vesicular swellings 6.5-7.9 µm. The dimensions of conidia were 28.3-45.1 × 11.5-17.5 µm and one septum (Figure 3). Conidia of S. lycopersici were solitary, oblong with a conical end at the apex, with 1-2 septa, and constricted at the transverse septum. The internal transcribed spacer region of rDNA was amplified with primers ITS1/ITS4 (5'-TCCGTAGGTGAACCTGCGG-3'/5'-TCCTCCGCTTATTGATATGC-3'), glyceraldehyde-3-phosphate dehydrogenase (gpd) was amplified with primers GPD-F/R (5'-GCACCGACCACAAAAATC-3'/ 5'-GGGCCGTCAACGACCTTC-3'), calmodulin region (cmdA) was amplified with the primers CALDF1/CALDR2 (5'-AGCAAGTCTCCGAGTTCAAGG-3'/5'-CTTCTGCATCATCAYCTGGACG3') from genomic DNA of strain HN01 (Xie et al. 2018), and PCR products were sequenced. The ITS sequence of strain HN01 (GenBank Accession No. MZ496930) had 99.64% identity with isolates sl001, sl110, sl111, and sl112 of Stemphylium lycopersici (GenBank Accession No. KX858848.1, MF480547.1, MF480548.1, MF480549.1). Similarly GPD sequences (GenBank Accession No. MZ505106) had 100% identity with strain xiqing, HZ2114 and HZ2115 of Stemphylium lycopersici (GenBank Accession No. KR911809.1, KR911810.1, KT957742.1 and KT957743.1), and CMDA sequences (GenBank Accession No. MZ505105) had 99.85% identity with Stemphylium lycopersici strain LJ1609270201 (GenBank Accession No. MG742412.1). A phylogenetic analysis constructed by MEGA6.0 based on concatenated sequences of the HN01 and another 17 strains from GenBank by using the maximum-likelihood (ML) method showed that the HN01 was clustered and matched with Stemphylium lycopersici LJ1609270201 (Figure 4). To satisfy Koch's postulates, we inoculated mature green leaves of Hevea brasiliensis with mycelial plugs (diameter = 5 mm) of pure cultured strain HN01. All leaves of Hevea brasiliensis were wrapped in a freezer bag to maintain relative humidity >85%, and the temperature of greenhouse is 28ºC. The disease developed on the inoculated leaves after 2-3 days, but not on control leaves (Figure 1B). We used the same method as before to re-isolate the pathogen, which had the same morphology and genotypes as the original isolate. S. lycopersici has been reported to infect the leaves of a variety of plants, including pepper, tomato, eggplant, watermelon, Physalis alkekengi. (Yang et al.2017; Ben et al. 2017; Yang et al. 2020). To our knowledge, this is the first record of S. lycopersici causing leaf spot of Hevea brasiliensis in China, and Hevea brasiliensis is the global new host of S. lycopersici. Hevea brasiliensis is the main source of natural rubber and is widely planted in southern China. Therefore, it is imperative to implement disease management measures to prevent potential threats.

11.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293447

RESUMO

The RPW8s (Resistance to Powdery Mildew 8) are atypical broad-spectrum resistance genes that provide resistance to the powdery mildew fungi. Powdery mildew of rubber tree is one of the serious fungal diseases that affect tree growth and latex production. However, the RPW8 homologs in rubber tree and their role of resistance to powdery mildew remain unclear. In this study, four RPW8 genes, HbRPW8-a, b, c, d, were identified in rubber tree, and phylogenetic analysis showed that HbRPW8-a was clustered with AtRPW8.1 and AtRPW8.2 of Arabidopsis. The HbRPW8-a protein was localized on the plasma membrane and its expression in rubber tree was significantly induced upon powdery mildew infection. Transient expression of HbRPW8-a in tobacco leaves induced plant immune responses, including the accumulation of reactive oxygen species and the deposition of callose in plant cells, which was similar to that induced by AtRPW8.2. Consistently, overexpression of HbRPW8-a in Arabidopsis thaliana enhanced plant resistance to Erysiphe cichoracearum UCSC1 and Pseudomonas syringae pv. tomato DC30000 (PstDC3000). Moreover, such HbRPW8-a mediated resistance to powdery mildew was in a salicylic acid (SA) dependent manner. Taken together, we demonstrated a new RPW8 member in rubber tree, HbRPW8-a, which could potentially contribute the resistance to powdery mildew.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Hevea , Arabidopsis/metabolismo , Hevea/genética , Hevea/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Ectópica do Gene , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Látex/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/fisiologia , Erysiphe , Ácido Salicílico/metabolismo , Nicotiana/metabolismo , Resistência à Doença/genética
12.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458704

RESUMO

Curcumin is an anti-inflammatory and neuroprotective compound in turmeric. It is a potential ligand of the aryl hydrocarbon receptor (AhR) that mediates anti-inflammatory signaling. However, the AhR-mediated anti-inflammatory effect of curcumin within the brain remains unclear. We investigated the role of AhR on the curcumin effect in inflammatory astrogliosis. Curcumin attenuated lipopolysaccharide (LPS)-induced proinflammatory IL-6 and TNF-α gene expression in primary cultured rat astrocytes. When AhR was knocked down, LPS-induced IL-6 and TNF-α were increased and curcumin-decreased activation of the inflammation mediator NF-κB p65 by LPS was abolished. Although LPS increased AhR and its target gene CYP1B1, curcumin further enhanced LPS-induced CYP1B1 and indoleamine 2,3-dioxygenase (IDO), which metabolizes tryptophan to AhR ligands kynurenine (KYN) and kynurenic acid (KYNA). Potential interactions between curcumin and human AhR analyzed by molecular modeling of ligand-receptor docking. We identified a new ligand binding site on AhR different from the classical 2,3,7,8-tetrachlorodibenzo-p-dioxin site. Curcumin docked onto the classical binding site, whereas KYN and KYNA occupied the novel one. Moreover, curcumin and KYNA collaboratively bound onto AhR during molecular docking, potentially resulting in synergistic effects influencing AhR activation. Curcumin may enhance the inflammation-induced IDO/KYN axis and allosterically regulate endogenous ligand binding to AhR, facilitating AhR activation to regulate inflammatory astrogliosis.


Assuntos
Curcumina , Gliose , Receptores de Hidrocarboneto Arílico , Animais , Curcumina/farmacologia , Gliose/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6 , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Ligantes , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Necrose Tumoral alfa/genética
13.
Phytopathology ; 111(9): 1648-1659, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34047620

RESUMO

Powdery mildew causes substantial losses in crop and economic plant yields worldwide. Although powdery mildew infection of rubber trees (Hevea brasiliensis), caused by the biotrophic fungus Erysiphe quercicola, severely threatens natural rubber production, little is known about the mechanism by which E. quercicola adapts to H. brasiliensis to invade the host plant. In barley and Arabidopsis thaliana, lifeguard (LFG) proteins, which have topological similarity to BAX INHIBITOR-1, are involved in host plant susceptibility to powdery mildew infection. In this study, we characterized an H. brasiliensis LFG protein (HbLFG1) with a focus on its function in regulating defense against powdery mildew. HbLFG1 gene expression was found to be upregulated during E. quercicola infection. HbLFG1 showed conserved functions in cell death inhibition and membrane localization. Expression of HbLFG1 in Nicotiana benthamiana leaves and A. thaliana Col-0 was demonstrated to significantly suppress callose deposition induced by conserved pathogen-associated molecular patterns chitin and flg22. Furthermore, we found that overexpression of HbLFG1 in H. brasiliensis mesophyll protoplasts significantly suppressed the chitin-induced burst of reactive oxygen species. Although A. thaliana Col-0 and E. quercicola displayed an incompatible interaction, Col-0 transformants overexpressing HbLFG1 were shown to be susceptible to E. quercicola. Collectively, the findings of this study provide evidence that HbLFG1 acts as a negative regulator of plant immunity that facilitates E. quercicola infection in H. brasiliensis.


Assuntos
Hevea , Hevea/genética , Doenças das Plantas , Imunidade Vegetal
14.
J Cell Mol Med ; 24(2): 1504-1515, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800162

RESUMO

PNO1 (partner of Nob1) was known as a RNA-binding protein in humans, and its ortholog PNO1 was reported to participate ribosome and proteasome biogenesis in yeasts. Yet there have been few studies about its functions in mammalian cells, and so far its role in human cells has never been reported, especially in urinary bladder cancer (UBC).We interrogated the cellular functions and clinical significance of PNO1 in, and its molecular mechanism through microarrays and bioinformatics analysis. Our findings support that PNO1 participates in promoting proliferation and colonogenesis, while reducing apoptosis of UBC cells, and is also predicted to be associated with the migration and metastasis of UBC PNO1 knockdown (KD) attenuated the tumorigenesis ability of UBC in mouse. PNO1 KD led to the altered expression of 1543 genes that are involved in a number of signalling pathways, biological functions and regulation networks. CD44, PTGS2, cyclin D1, CDK1, IL-8, FRA1, as well as mTOR, p70 S6 kinase, p38 and Caspase-3 proteins were all down-regulated in PNO1 KD cells, suggesting the involvement of PNO1 in inflammatory responses, cell cycle regulation, chemotaxis, cell growth and proliferation, apoptosis, cell migration and invasiveness. This study will enhance our understanding of the molecular mechanism of UBC and may eventually provide novel targets for individualized cancer therapy.


Assuntos
Redes Reguladoras de Genes , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Ligação a RNA/genética , Regulação para Cima/genética
15.
World J Surg Oncol ; 17(1): 65, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975161

RESUMO

BACKGROUND: To assess the feasibility and effectiveness of total laparoscopic nephroureterectomy for upper urinary tract urothelial carcinoma (UUTUC) under a single surgical position. METHODS: The medical data of 89 UUTUC patients were collected, who were treated in our institution from Jan 2016 to Jun 2018. The 45 cases that underwent total laparoscopic nephroureterectomy with a single position were allocated in the test group, while the 44 patients who received retroperitoneal laparoscopy combined with hypogastric oblique incision were assigned in the control group. We compared the two groups in perioperative indicators and tumor recurrence rate and analyzed the clinical effect of the new surgical treatment of UUTUC. RESULTS: All 89 operations for UUTUC were successful and had no conversion to open surgery. No obvious complications occurred during the perioperative period. The test group had significantly shorter average operation time (96.58 ± 8.56 min versus 147.45 ± 9.16 min), less blood loss (39.58 ± 4.15 ml versus 46.50 ± 4.58 ml), earlier ambulation (7.47 ± 1.01 h versus 11.39 ± 1.82 h), and shorter length of stay in hospital (6.98 ± 1.14 days versus 9.89 ± 1.51 days) (P < 0.05). The visual analogue scale (VAS) scores of the test group at 1 h, 12 h, and 24 h after operation were lower compared with those of the control group (P < 0.05). No significant difference was found in the tumor stage, tumor grade, postoperative gastrointestinal function recovery time, follow-up time, and tumor recurrence rate between the two groups. CONCLUSIONS: Compared with the traditional surgical methods, the total laparoscopic treatment of UUTUC under a single surgical position had advantages of shorter operation time, less blood loss, and early postoperative ambulation. The new operative method could shorten the length of stay and accelerate recovery of patients, and it is a viable surgical procedure which deserved clinical application and promotion. TRIAL REGISTRATION: Our trial was approved and has been registered in the ethics committee of the Yantai Yuhuangding Hospital (Approval NO.[2015]171) .


Assuntos
Laparoscopia/métodos , Nefroureterectomia/métodos , Sistema Urinário/cirurgia , Neoplasias Urológicas/cirurgia , Idoso , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Sistema Urinário/patologia , Neoplasias Urológicas/patologia
16.
Reprod Biomed Online ; 37(4): 467-479, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30396457

RESUMO

RESEARCH QUESTION: Can seminal plasma markers for oligoasthenozoospermia be identified by comparison of the human seminal plasma proteome in men with oligoasthenozoospermia and normozoospermia? DESIGN: An in-depth quantitative proteome analysis was conducted using a high-throughput method named isobaric tag for relative and absolute quantification. A total of 734 seminal plasma proteins were quantified by mass spectrometry. RESULTS: Compared with the seminal plasma from men with normozoospermia, 22 upregulated proteins and 20 downregulated proteins were identified in the oligoasthenozoospermic seminal plasma. These differential seminal plasma proteins were involved in various physiological processes, including metabolism, transport, antioxidation and immune response. The confidence of some proteome data was further verified by western blot of (prostate-specific antigen [KLK3], lactotransferrin [LTF], alpha-1-antitrypsin [SERPINA1] and glyceraldehyde-3-phosphate dehydrogenase [GAPDH]). Additionally, 38% of the seminal plasma proteins identified in this study have not been reported in previously published studies on seminal plasma proteome, and 53% of our seminal plasma proteins were shared with published studies on human plasma proteome. CONCLUSIONS: Our seminal plasma proteome research provides new complementary high-confidence data, and also enhances understanding of the pathogenic mechanisms in oligoasthenozoospermia.


Assuntos
Oligospermia/metabolismo , Proteoma , Sêmen/metabolismo , Biologia Computacional , Humanos , Masculino , Proteômica/métodos
17.
Pestic Biochem Physiol ; 146: 33-42, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29626990

RESUMO

Anthracnose disease in the cotton plant caused by fungal pathogen Colletotrichum gossypii. It is supposed to be most critical diseases in the cotton crop as it causes infection and leads to complete damaging of the cotton crop by infecting the leaves, stems, and bolls in the field. The disease control is challenging due to the absence of an effective fungicide without damaging the farmer health and environment. So the series of experiments were designed to assess the antagonistic activity of biosurfactant released by strain Bacillus licheniformis OE-04 against the anthracnose causing agent in cotton and this strain was screened out from forty eight strain of rhizobacteria. We also estimated the heat stability and pH range and toxicity of biosurfactant produced by strain 0E-04. The results showed that biosurfactant has maximum antifungal activity against C. gossypii. In vitro study concluded that the biosurfactant can reduce fungal activity by inhibiting the spore germination of C. gossypii. Moreover, the biosurfactant also has wide pH and temperature range. We observed Antifungal activity of biosurfactant at 5 to 10 pH range and temperature range was also wide from room temperature to 100 °C. We also observed the toxicity of biosurfactant produced by Bacillus licheniformis against zebra fish (Danio rerio). We were noticed that biosurfactant have least harmful effect with maximum concentration. The study confirmed that biosurfactant of Bacillus licheniformis have high pH and heat stability range with least harmful effects so it can be a good replacement of chemical pesticides for cotton anthracnose control.


Assuntos
Antifúngicos/farmacologia , Bacillus licheniformis/metabolismo , Colletotrichum/efeitos dos fármacos , Animais , Antifúngicos/isolamento & purificação , Colletotrichum/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Fermentação , Concentração de Íons de Hidrogênio , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio , Temperatura , Peixe-Zebra/embriologia
18.
Ren Fail ; 40(1): 15-21, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29295646

RESUMO

BACKGROUND: This study investigated the therapeutic effect of intensive phosphorus-lowering therapy on intact-parathyroid hormone (iPTH) levels in hemodialysis patients. METHODS: Ninety-five hemodialysis patients with serum phosphorus ≥1.78 mmol/L and iPTH ≥300 pg/dL were apportioned to either the treatment or control group (n = 43 and 52, respectively) based on patient commitment to treatment. The treatment group was given phosphorus-lowering therapies with phosphate binders (lanthanum, sevelamer or/and calcium reagent) combined with dietary phosphate restriction and intensified hemodialysis. The control individuals were given low doses of calcium agents, if serum calcium was <2.54 mmol/L. Percent changes in serum phosphorus and iPTH levels were compared between the two groups. In addition, based on the time required to achieve >20% decrease in serum phosphorus, the patients in the treatment group were further stratified as rapid responders (≤2 months; 27 patients) or slow responders (>2 months; 16 patients) and percent changes in iPTH were compared. RESULTS: Serum phosphorus and iPTH levels decreased from baseline in the treatment group (-24.08 ± 1.93% and -9.92 ± 3.70%, respectively) but increased in the control group (22.00 ± 3.63% and 104.21 ± 23.89%; both p < .001). In the rapid responders subgroup, the iPTH decreased (-16.93 ± 3.49%), but in the slow responders subgroup the iPTH increased slightly (0.68 ± 7.37%, p < .05). CONCLUSIONS: For these patients on maintenance hemodialysis, intensive treatment of hyperphosphatemia was associated with a decrease in iPTH levels, especially for those who had achieved substantial reduction in serum phosphorus within 2 months.


Assuntos
Quelantes/uso terapêutico , Hiperfosfatemia/tratamento farmacológico , Falência Renal Crônica/terapia , Hormônio Paratireóideo/sangue , Diálise Renal/efeitos adversos , Cálcio/sangue , Feminino , Humanos , Hiperfosfatemia/sangue , Falência Renal Crônica/sangue , Masculino , Pessoa de Meia-Idade , Fosfatos/sangue , Fósforo na Dieta/efeitos adversos , Estudos Prospectivos
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 35(1): 96-99, 2018 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-29419871

RESUMO

OBJECTIVE To assess the value of whole genome sequencing for the identification of de novo structural chromosomal abnormalities. METHODS Whole genome sequencing was utilized to analyze a boy with a peripheral blood karyotype of 46,XY,ins(3)(q21p13p21). The patient manifested with ocular abnormalities including blepharophimosis and ptosis. RESULTS Whole genome sequencing suggested a fragmentation of chromosome 3 (from position 55 473 257 to 78 341 929) has been inserted into between 136 876 730 to 138 643 831, and the breakpoints have occurred in the intergenic region. Meanwhile, there was a deletion between 138 643 831 and 138 694 476. This region contains FOXL2, a pathogenic gene associated with blepharophimosis-ptosis-epicanthus inversus syndrome. CONCLUSION De novo structural chromosomal abnormalities may be caused by novel breakpoints or microdeletion flanking the deletion region. To confirm its pathogenic nature, a mutation needs to be assessed at both genetic and genomic levels, for which whole genome sequencing is a good option.


Assuntos
Blefarofimose/genética , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Anormalidades da Pele/genética , Anormalidades Urogenitais/genética , Sequenciamento Completo do Genoma/métodos , Proteína Forkhead Box L2/genética , Deleção de Genes , Humanos , Lactente , Cariotipagem , Masculino
20.
J Neurosci ; 36(6): 2027-43, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865625

RESUMO

Growth-associated protein 43 (GAP43), a protein kinase C (PKC)-activated phosphoprotein, is often implicated in axonal plasticity and regeneration. In this study, we found that GAP43 can be induced by the endotoxin lipopolysaccharide (LPS) in rat brain astrocytes both in vivo and in vitro. The LPS-induced astrocytic GAP43 expression was mediated by Toll-like receptor 4 and nuclear factor-κB (NF-κB)- and interleukin-6/signal transducer and activator of transcription 3 (STAT3)-dependent transcriptional activation. The overexpression of the PKC phosphorylation-mimicking GAP43(S41D) (constitutive active GAP43) in astrocytes mimicked LPS-induced process arborization and elongation, while application of a NF-κB inhibitory peptide TAT-NBD or GAP43(S41A) (dominant-negative GAP43) or knockdown of GAP43 all inhibited astrogliosis responses. Moreover, GAP43 knockdown aggravated astrogliosis-induced microglial activation and expression of proinflammatory cytokines. We also show that astrogliosis-conditioned medium from GAP43 knock-down astrocytes inhibited GAP43 phosphorylation and axonal growth, and increased neuronal damage in cultured rat cortical neurons. These proneurotoxic effects of astrocytic GAP43 knockdown were accompanied by attenuated glutamate uptake and expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in LPS-treated astrocytes. The regulation of EAAT2 expression involves actin polymerization-dependent activation of the transcriptional coactivator megakaryoblastic leukemia 1 (MKL1), which targets the serum response elements in the promoter of rat Slc1a2 gene encoding EAAT2. In sum, the present study suggests that astrocytic GAP43 mediates glial plasticity during astrogliosis, and provides beneficial effects for neuronal plasticity and survival and attenuation of microglial activation. SIGNIFICANCE STATEMENT: Astrogliosis is a complex state in which injury-stimulated astrocytes exert both protective and harmful effects on neuronal survival and plasticity. In this study, we demonstrated for the first time that growth-associated protein 43 (GAP43), a well known growth cone protein that promotes axonal regeneration, can be induced in rat brain astrocytes by the proinflammatory endotoxin lipopolysaccharide via both nuclear factor-κB and signal transducer and activator of transcription 3-mediated transcriptional activation. Importantly, LPS-induced GAP43 mediates plastic changes of astrocytes while attenuating astrogliosis-induced microglial activation and neurotoxicity. Hence, astrocytic GAP43 upregulation may serve to indicate beneficial astrogliosis after CNS injury.


Assuntos
Astrócitos/efeitos dos fármacos , Proteína GAP-43/biossíntese , Proteína GAP-43/genética , Gliose/genética , Microglia/efeitos dos fármacos , NF-kappa B/genética , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Fator de Transcrição STAT3/genética , Receptor 4 Toll-Like/genética , Animais , Citocinas/biossíntese , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Ativação de Macrófagos/efeitos dos fármacos , Neurônios , Fosforilação , Ratos , Ratos Sprague-Dawley , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA