Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 20(1): 154, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329464

RESUMO

The importance of actin and microtubule (MT) cytoskeletons in testis function in rodents is known to some extent, but its role in the etiology of azoospermia in humans remains unexplored. Here, we examined if MT cytoskeleton was defective in NOA (non-obstructive azoospermia) testes versus normal human testes based on histopathological, immunofluorescence (IF), and scRNA-Seq transcriptome profiling. Testis biopsy samples from n = 6 normal men versus n = 3 Sertoli cell only (SCO) and n = 3 MA (meiotic arrest) of NOA patients were used for histopathological analysis. IF analysis was also used to examine MT organization across the seminiferous epithelium, investigating the likely involvement of microtubule-associated proteins (MAPs). scRNA-Seq transcriptome profiling datasets from testes of 3 SCO patients versus 3 normal men in public domain in Gene Expression Omnibus (GEO) Sample (GSM) with identifiers were analyzed to examine relevant genes that regulate MT dynamics. NOA testes of MA and SCO patients displayed notable defects in MT organization across the epithelium with extensive truncation, mis-alignments and appeared as collapsed structures near the base of the tubules. These changes are in contrast to MTs in testes of normal men. scRNA-Seq analyses revealed considerable loss of spermatogenesis capacity in SCO testes of NOA patients versus normal men. An array of genes that support MT dynamics displayed considerable changes in expression and in spatial distribution. In summary, defects in MT cytoskeleton were noted in testes of NOA (SCO) patients, possibly mediated by defective spatial expression and/or distribution of MAPs. These changes, in turn, may impede spermatogenesis in SCO testes of NOA patients.


Assuntos
Azoospermia , Humanos , Masculino , Azoospermia/genética , Azoospermia/patologia , Testículo/metabolismo , Espermatogênese/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Citoesqueleto/genética , Citoesqueleto/metabolismo
2.
Adv Exp Med Biol ; 1288: 161-173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453736

RESUMO

Non-obstructive azoospermia (NOA) and obstructive azoospermia (OA) are two common causes of infertility that affect a considerable number of men. However, few studies were performed to understand the molecular etiology of these disorders. Studies based on bioinformatics and genetic analyses in recent years, however, have yielded insightful information and have identified a number of genes that are involved in these disorders. In this review, we briefly summarize and evaluate these findings. We also discuss findings based on epigenetic modifications of sperm DNAs that affect a number of genes pertinent to NOA and OA. The information summarized in this Chapter should be helpful to investigators in future functional studies of NOA and OA.


Assuntos
Azoospermia , Infertilidade Masculina , Azoospermia/genética , Testes Genéticos , Humanos , Infertilidade Masculina/genética , Masculino , Espermatozoides , Testículo
3.
Med Oncol ; 41(3): 66, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281254

RESUMO

Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Piroptose , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Neoplasias/metabolismo
4.
Toxics ; 12(10)2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39453183

RESUMO

In this study, the effects of different concentrations of 2,4-dinitrophenol (2,4-DNP) stress on physiological parameters, as well as the uptake and removal of 2,4-DNP in Salix matsudana, were investigated using hydroponic simulation experiments to explore the potential of the use of Salix matsudana in the phytoremediation of wastewater polluted by 2,4-DNP. The results showed that PN (net photosynthetic rate), Tr (transpiration rate), Gs (stomatal conductance), Ls (stomatal limitation value), Fv/Fm (maximal quantum yield of PSII photochemistry), and qp (photochemical quenching coefficient) of Salix matsudana seedlings showed an overall decreasing trend, while Ci (intercellular CO2 concentration) showed an increasing trend with the increase in 2,4-DNP concentration. The net photosynthetic rate and intercellular carbon dioxide concentration showed an opposite trend in the leaves with the increase in 2,4-DNP stress concentration, and the inhibition of net photosynthesis by 2,4-DNP on Salix matsudana seedlings was mainly based on non-stomatal factors. In the 15 d incubation experiment, the values of SOD (superoxide dismutase), POD (peroxidase), and CAT (catalase) indexes were higher at low concentrations of 2,4-DNP stress, and all three enzymes reached their maximum values at 10 mg L-1 of 2,4-DNP and then decreased. Salix matsudana seedlings could tolerate 2,4-DNP stress well, which did not exceed 20 mg L-1. The toxicity of 2,4-DNP solution was significantly reduced after purification by Salix matsudana seedlings. The removal rate of 2,4-DNP was higher than 80% in each treatment group by Salix matsudana purified after 15 days. When the concentration of 2,4-DNP reached 20 mg L-1, the contents of MDA (malonicdialdehyde) were 55.62 mmol g-1, and the values of REC (relative conductivity) and LD (leaf damage) were 63.51% and 59.93%, respectively. The structure and function of the cell membrane in leaves were seriously damaged. With the increase in 2,4-DNP concentration, the removal of 2,4-DNP by Salix matsudana seedlings showed a decreasing trend. When the 2,4-DNP concentration was 5 mg L-1, the highest removal rate of 2,4-DNP by Salix matsudana seedlings was 95.98%, while when the 2,4-DNP concentration was 20 mg L-1, the highest removal rate was 86.76%. It is noted that the suitable, recommended concentration for the phytoremediation of 2,4-DNP contamination by Salix matsudana seedlings is between 8.81 and 13.78 mg L-1.

5.
World J Gastrointest Surg ; 16(1): 186-195, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328332

RESUMO

BACKGROUND: Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer. Incisional surgical site infection (SSI) is a common complication after ileostomy closure. AIM: To evaluate the efficacy and safety of the micro-power negative pressure wound technique (MPNPWT) in preventing incisional SSI. METHODS: This was a prospective, randomized controlled clinical trial conducted at a single center. A total of 101 consecutive patients who underwent ileostomy closure after rectal cancer surgery with a prophylactic ileostomy were enrolled from January 2019 to December 2021. Patients were randomly allocated into an MPNPWT group and a control group. The MPNPWT group underwent intermittent suturing of the surgical incision with 2-0 Prolene and was covered with a micro-power negative pressure dressing. The surgical outcomes were compared between the MPNPWT (n = 50) and control (n = 51) groups. Risk factors for incisional SSI were identified using logistic regression. RESULTS: There were no differences in baseline characteristics between the MPNPWT (n = 50) and control groups (n = 51). The incisional SSI rate was significantly higher in the control group than in the MPNPWT group (15.7% vs 2.0%, P = 0.031). However, MPNPWT did not affect other surgical outcomes, including intra-abdominal complications, operative time, and blood loss. Postoperative hospital stay length and hospitalization costs did not differ significantly between the two groups (P = 0.069 and 0.843, respectively). None of the patients experienced adverse effects of MPNPWT, including skin allergy, dermatitis, and pain. MPNPWT also helped heal the infected incision. Our study indicated that MPNPWT was an independent protective factor [odds ratio (OR) = 0.005, P = 0.025)] and diabetes was a risk factor (OR = 26.575, P= 0.029) for incisional SSI. CONCLUSION: MPNPWT is an effective and safe way to prevent incisional SSI after loop ileostomy closure.

6.
ChemistryOpen ; 11(3): e202100219, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142088

RESUMO

Non-obstructive azoospermia is one of the most common causes of male infertility, but there is still no specific treatment drug. Given that the Oct4 (Octamer-binding transcription factor 4) has an important regulatory effect on spermatogenesis, activating it can effectively promote spermatogenesis, so it is of great value to develop Oct4-targeted drug design and elucidating its mechanism of action. Here, we screened out the Oct4-targeted drug molecule NBMA (N-benzyl-4-methoxy-2-(1-(4-(trifluoromethyl)phenyl)vinyl)aniline) by computer-assisted technology, and found that it has a significant promoting effect on spermatogenesis in the established mouse azoospermia model. Subsequently, through transcriptome sequencing and enrichment analysis, real-time fluorescent quantitative PCR (qPCR) and western blot experiments revealed that NBMA promotes the differentiation of spermatogonial stem cells by activating the Oct4 pathway, thereby promoting spermatogenesis. This study proves that NBMA is a molecule with great potential to be developed as a therapeutic drug for azoospermia. It also shows that computer-assisted, chemical and biological multidisciplinary methods play a very important role in innovative drug discovery.


Assuntos
Células-Tronco Germinativas Adultas , Azoospermia , Infertilidade Masculina , Células-Tronco Germinativas Adultas/metabolismo , Animais , Azoospermia/metabolismo , Azoospermia/terapia , Modelos Animais de Doenças , Humanos , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Espermatogênese , Testículo/metabolismo
7.
Cell Death Dis ; 12(5): 491, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990549

RESUMO

Spermatogonia transit-amplifying (TA) divisions are crucial for the differentiation of germline stem cell daughters. However, the underlying mechanism is largely unknown. In the present study, we demonstrated that CG6015 was essential for spermatogonia TA-divisions and elongated spermatozoon development in Drosophila melanogaster. Spermatogonia deficient in CG6015 inhibited germline differentiation leading to the accumulation of undifferentiated cell populations. Transcriptome profiling using RNA sequencing indicated that CG6015 was involved in spermatogenesis, spermatid differentiation, and metabolic processes. Gene Set Enrichment Analysis (GSEA) revealed the relationship between CG6015 and the epidermal growth factor receptor (EGFR) signaling pathway. Unexpectedly, we discovered that phosphorylated extracellular regulated kinase (dpERK) signals were activated in germline stem cell (GSC)-like cells after reduction of CG6015 in spermatogonia. Moreover, Downstream of raf1 (Dsor1), a key downstream target of EGFR, mimicked the phenotype of CG6015, and germline dpERK signals were activated in spermatogonia of Dsor1 RNAi testes. Together, these findings revealed a potential regulatory mechanism of CG6015 via EGFR signaling during spermatogonia TA-divisions in Drosophila testes.


Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Espermatogônias/fisiologia , Testículo/metabolismo , Animais , Diferenciação Celular/fisiologia , Drosophila , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA