Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174182, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925392

RESUMO

Climate and human activity are two important factors in regulating organic matter (OM) accumulation in the lake environment. However, when and how anthropogenic impacts have affected lacustrine OM accumulation in southwest China during the late Holocene have not yet been well defined. Here, a 16.3-kyr n-alkane record derived from Erhai Lake was used to trace OM sources and explore their connections to climate and human activity. The n-alkane distributions indicated that the dominant sediment sources shifted from terrestrial and aquatic plants to algae in the late Holocene. OM accumulation was closely related to catchment soil erosion, sediment transport, and deposition processes regulated by climate conditions before 5.0 cal. kyr B.P., following the patterns that stronger monsoon precipitation favoured more terrestrial and less aquatic OM input, and vice versa. From 5.0 to 2.0 cal. kyr B.P., the synchronous downwards trends in terrestrial OM input and precipitation intensity indicated that climate remained a major driving force for OM accumulation. However, sediment sources experienced large-magnitude and centennial-scale oscillations between allochthonous and autochthonous inputs, reflecting early human impacts appeared and lake ecosystems retained the self-regulated ability to recover from the basin-wide early moderate human disturbances. Afterwards, the increased (decreased) OM contributions from terrestrial (aquatic) plants contradicted the weakening monsoon precipitation since 2.0 cal. kyr B.P., indicating a dominant effect of human activities on OM accumulation. This change was accompanied by highly improved algae productivity and gradually elevated lacustrine trophic status, and the lake ecosystem eventually shifted into another state largely deviating from its climate-driven background due to intensified deforestation and agricultural cultivation. Regional comparison indicated that anthropogenic disturbances have temporal differences in southwest China. This study will further improve our understanding of past climate-human-environment interactions in southwest China.


Assuntos
Monitoramento Ambiental , Lagos , China , Lagos/química , Mudança Climática , Sedimentos Geológicos/química , Clima , Humanos , Ecossistema , Efeitos Antropogênicos
2.
Environ Sci Pollut Res Int ; 29(53): 80817-80830, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35729385

RESUMO

This study aims to investigate the spatial and temporal characteristics, pollution degrees, and potential ecological risks of mercury (Hg) in urban lake waters and sediments in Guangzhou, where is a typical area of Hg emission and population-economic-industrial concentration in South China. In different districts of this city, the water from 15 lakes were collected continuously from June 2020 to May 2021, and the sediments from 9 lakes were collected in 2015 and 2021. The seasonal changes of Hg concentration (Hg-C) in the water were found to be high in winter and low in summer. The spatial distribution of Hg-C in sediments showed that it was high in urban central areas and low in suburbs. The Nemero index and geological accumulation index showed that there were uncontaminated of Hg in the collected lake water, and above moderately contaminated in the lake sediments in urban center, respectively. The Hg pollution potential ecological risk index showed that there was low risk in the collected water, high and extremely high risk in the lake sediments in urban center, respectively. The principal component analysis (PCA) and correlation analysis (CA) of Hg and meteorological factors showed that precipitation, temperature, and vapor pressure had negative effects on the seasonal changes of Hg-C in water, and air pressure and wind direction had positive effects. The PCA and CA of Hg and other geochemical elements showed that anthropogenic emissions may be the main sources of Hg in sediments, which was also supported by the data of population density, road density, and motor vehicles per 1000 people. This study provided a reference for urban lake pollution treatment, resident health, and ecological environment protection.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Lagos , Mercúrio/análise , Sedimentos Geológicos/análise , Água/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Medição de Risco , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA