Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Transl Med ; 22(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169402

RESUMO

Epigenetic regulation is reported to play a significant role in the pathogenesis of various kidney diseases, including renal cell carcinoma, acute kidney injury, renal fibrosis, diabetic nephropathy, and lupus nephritis. However, the role of epigenetic regulation in calcium oxalate (CaOx) crystal deposition-induced kidney injury remains unclear. Our study demonstrated that the upregulation of enhancer of zeste homolog 2 (EZH2)-mediated ferroptosis facilitates CaOx-induced kidney injury. CaOx crystal deposition promoted ferroptosis in vivo and in vitro. Usage of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, mitigated CaOx-induced kidney damage. Single-nucleus RNA-sequencing, RNA-sequencing, immunohistochemical and western blotting analyses revealed that EZH2 was upregulated in kidney stone patients, kidney stone mice, and oxalate-stimulated HK-2 cells. Experiments involving in vivo EZH2 knockout, in vitro EZH2 knockdown, and in vivo GSK-126 (an EZH2 inhibitor) treatment confirmed the protective effects of EZH2 inhibition on kidney injury and ferroptosis. Mechanistically, the results of RNA-sequencing and chromatin immunoprecipitation assays demonstrated that EZH2 regulates ferroptosis by suppressing solute carrier family 7, member 11 (SLC7A11) expression through trimethylation of histone H3 lysine 27 (H3K27me3) modification. Additionally, SOX4 regulated ferroptosis by directly modulating EZH2 expression. Thus, this study demonstrated that SOX4 facilitates ferroptosis in CaOx-induced kidney injury through EZH2/H3K27me3-mediated suppression of SLC7A11.


Assuntos
Nefropatias Diabéticas , Ferroptose , Cálculos Renais , Humanos , Camundongos , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Oxalato de Cálcio , Histonas/metabolismo , Epigênese Genética , Rim/patologia , Nefropatias Diabéticas/metabolismo , Cálculos Renais/patologia , RNA/metabolismo , Fatores de Transcrição SOXC/metabolismo , Sistema y+ de Transporte de Aminoácidos
2.
BMC Microbiol ; 23(1): 143, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208622

RESUMO

BACKGROUND: Mounting evidence indicates that the gut microbiome (GMB) plays an essential role in kidney stone (KS) formation. In this study, we conducted a systematic review and meta-analysis to compare the composition of gut microbiota in kidney stone patients and healthy individuals, and further understand the role of gut microbiota in nephrolithiasis. RESULTS: Six databases were searched to find taxonomy-based comparison studies on the GMB until September 2022. Meta-analyses were performed using RevMan 5.3 to estimate the overall relative abundance of gut microbiota in KS patients and healthy subjects. Eight studies were included with 356 nephrolithiasis patients and 347 healthy subjects. The meta-analysis suggested that KS patients had a higher abundance of Bacteroides (35.11% vs 21.25%, Z = 3.56, P = 0.0004) and Escherichia_Shigella (4.39% vs 1.78%, Z = 3.23, P = 0.001), and a lower abundance of Prevotella_9 (8.41% vs 10.65%, Z = 4.49, P < 0.00001). Qualitative analysis revealed that beta-diversity was different between the two groups (P < 0.05); Ten taxa (Bacteroides, Phascolarctobacterium, Faecalibacterium, Flavobacterium, Akkermansia, Lactobacillus, Escherichia coli, Rhodobacter and Gordonia) helped the detection of kidney stones (P < 0.05); Genes or protein families of the GMB involved in oxalate degradation, glycan synthesis, and energy metabolism were altered in patients (P < 0.05). CONCLUSIONS: There is a characteristic gut microbiota dysbiosis in kidney stone patients. Individualized therapies like microbial supplementation, probiotic or synbiotic preparations and adjusted diet patterns based on individual gut microbial characteristics of patients may be more effective in preventing stone formation and recurrence.


Assuntos
Microbioma Gastrointestinal , Cálculos Renais , Simbióticos , Humanos , Cálculos Renais/microbiologia , Flavobacterium , Disbiose/microbiologia
3.
Inflamm Res ; 72(12): 2111-2126, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924395

RESUMO

OBJECTIVE AND DESIGN: Kidney stones commonly occur with a 50% recurrence rate within 5 years, and can elevate the risk of chronic kidney disease. Macrophage-to-myofibroblast transition (MMT) is a newly discovered mechanism that leads to progressive fibrosis in different forms of kidney disease. In this study, we aimed to investigate the role of MMT in renal fibrosis in glyoxylate-induced kidney stone mice and the mechanism by which signal transducer and activator of transcription 6 (STAT6) regulates MMT. METHODS: We collected non-functioning kidneys from patients with stones, established glyoxylate-induced calcium oxalate stone mice model and treated AS1517499 every other day in the treatment group, and constructed a STAT6-knockout RAW264.7 cell line. We first screened the enrichment pathway of the model by transcriptome sequencing; detected renal injury and fibrosis by hematoxylin eosin staining, Von Kossa staining and Sirius red staining; detected MMT levels by multiplexed immunofluorescence and flow cytometry; and verified the binding site of STAT6 at the PPARα promoter by chromatin immunoprecipitation. Fatty acid oxidation (FAO) and fibrosis-related genes were detected by western blot and real-time quantitative polymerase chain reaction. RESULTS: In this study, we found that FAO was downregulated, macrophages converted to myofibroblasts, and STAT6 expression was elevated in stone patients and glyoxylate-induced kidney stone mice. The promotion of FAO in macrophages attenuated MMT and upregulated fibrosis-related genes induced by calcium oxalate treatment. Further, inhibition of peroxisome proliferator-activated receptor-α (PPARα) eliminated the effect of STAT6 deletion on FAO and fibrosis-associated protein expression. Pharmacological inhibition of STAT6 also prevented the development of renal injury, lipid accumulation, MMT, and renal fibrosis. Mechanistically, STAT6 transcriptionally represses PPARα and FAO through cis-inducible elements located in the promoter region of the gene, thereby promoting MMT and renal fibrosis. CONCLUSIONS: These findings establish a role for STAT6 in kidney stone injury-induced renal fibrosis, and suggest that STAT6 may be a therapeutic target for progressive renal fibrosis in patients with nephrolithiasis.


Assuntos
Cálculos Renais , Miofibroblastos , Animais , Humanos , Camundongos , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/farmacologia , Ácidos Graxos/metabolismo , Fibrose , Glioxilatos/metabolismo , Glioxilatos/farmacologia , Rim/patologia , Cálculos Renais/metabolismo , Cálculos Renais/patologia , Macrófagos/metabolismo , Miofibroblastos/patologia , Oxalatos/metabolismo , Oxalatos/farmacologia , PPAR alfa/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
4.
J Biochem Mol Toxicol ; 36(6): e23039, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35279909

RESUMO

The proinflammatory property of cisplatin is potentially destructive and contributes to the pathogenesis of acute kidney injury (AKI). The role and upstream regulatory mechanism of histone acetyltransferase 1 (HAT1) in acute kidney inflammation are still unknown. We performed RNA sequencing to filter differentially expressed microRNAs (miRNAs) in the kidney tissue of mice with AKI induced by cisplatin and ischemia-reperfusion. Here, we found that miR-486-5p was upregulated and that the expression of HAT1 was reduced in AKI mouse models and injured human renal proximal tubular epithelial cell (HK-2) model induced by cisplatin. miR-486-5p is implicated in cisplatin-induced kidney damage in vivo. Bioinformatics analysis predicted a potential binding site between miR-486-5p and HAT1. The Luciferase reporter assay and Western blot confirmed that miR-486-5p directly targeted the 3'-untranslated region of HAT1 mRNA and inhibited its expression in the cytoplasm of HK-2 cells. In the in vitro study, inhibiting miR-486-5p reduced apoptosis, and the expression of proinflammatory mediators was induced by cisplatin in HK-2 cells. Simultaneously, the downregulation of miR-486-5p inhibited the activation of the toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). We further found that HAT1 could inhibit apoptosis and the activation of cisplatin on the TLR4/NF-κB pathway and that the upregulation of miR-486-5p reversed this effect. Therefore, the upregulation of miR-486-5p targeting HAT1 promoted the cisplatin-induced apoptosis and acute inflammation response of renal tubular epithelial cells by activating the TLR4/NF-κB pathway, providing a new basis to highlight the potential intervention of regulating the miR-486-5p/HAT1 axis.


Assuntos
Injúria Renal Aguda , MicroRNAs , Regiões 3' não Traduzidas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Cisplatino/efeitos adversos , Células Epiteliais/metabolismo , Histona Acetiltransferases/genética , Inflamação/induzido quimicamente , Inflamação/genética , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética
5.
J Steroid Biochem Mol Biol ; 230: 106278, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870372

RESUMO

Polycystic ovary syndrome (PCOS) is a systemic endocrine disease affecting women's reproductive health. Ovarian angiogenesis in PCOS patients is abnormal, manifested by increased ovarian stromal vascularization and upregulated proangiogenic factors such as vascular endothelial growth factor (VEGF). However, the specific mechanisms underlying these changes in PCOS remain unknown. In this study, we induced the adipogenic differentiation in preadipocyte 3T3-L1 cells and found that adipocyte-derived exosomes promoted proliferation, migration, tube formation, and VEGFA expression in human ovarian microvascular endothelial cells (HOMECs) by delivering miR-30c-5p. Mechanistically, dual luciferase reporter assay demonstrated that miR-30c-5p directly targeted the 3'- untranslated region (UTR) of suppressor of cytokine signaling 3 (SOCS3) mRNA. In addition, adipocyte-derived exosomal miR-30c-5p activated signal transducer and activator of transcription 3 (STAT3)/VEGFA pathway in HOMECs via targeting SOCS3. In vivo experiments indicated that tail vein injection of adipocyte-derived exosomes exacerbated endocrine and metabolic disorders and ovarian angiogenesis in mice with PCOS via miR-30c-5p. Taken together, the study revealed that adipocyte-derived exosomal miR-30c-5p promotes ovarian angiogenesis via the SOCS3/STAT3/VEGFA pathway, thereby participating in the development of PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Síndrome do Ovário Policístico/genética , Células Endoteliais/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
6.
Medicine (Baltimore) ; 102(31): e34443, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37543815

RESUMO

To study the anatomical orientation of the posterior group of calyces based on reconstructed images of computerized tomography urography (CTU) and provide a novel classification with its clinical significance. Clinical data of a total of 1321 patients, who underwent CTU examination in our hospital were retrospectively analyzed. Among these, a total of 2642 3-dimensional reconstructed images of CTU scans were considered in this study. Based on the morphology of the renal calyces and the influence on the establishment of surgical access, the posterior group renal calyces are classified into 3 major types including pot-belly type, classically branched and elongated branched. The classically branched type is further classified into 3 sub-types: a, b and c, based on the association of minor calyces of the posterior group to the major calyces. Type a is derived from 1 group of major calyces only, type b is derived from 2 groups of major calyces simultaneously, and type c is derived from 3 groups of major calyces simultaneously. Statistical findings revealed that all kidneys possess posterior group calyces. The percentage of occurrence of pot-belly type, classically branched and elongated branched is 8.06%, 73.13%, and 18.81%, respectively. The anatomical typing of the classical branching type occurred in 19.36%, 68.17%, and 12.47% for types a, b, and c, respectively. In this study, the posterior group calyces were found to be present across all patients. The posterior group calyces were highest in the classical branching type, of which anatomical typing was highest in type b. The typing of the posterior group of calyces could provide an anatomical basis for percutaneous nephrolithotomy (PCNL) puncture from the posterior group.


Assuntos
Cálculos Renais , Nefrostomia Percutânea , Humanos , Cálculos Renais/cirurgia , Nefrostomia Percutânea/métodos , Relevância Clínica , Estudos Retrospectivos , Rim/diagnóstico por imagem
7.
Theranostics ; 13(6): 1860-1875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064878

RESUMO

Rationale: The role of histone methylation modifications in renal disease, particularly in sepsis-induced acute kidney injury (AKI), remains unclear. This study aims to investigate the potential involvement of the histone methyltransferase zeste homolog 2 (EZH2) in sepsis-induced AKI and its impact on apoptosis and inflammation. Methods: We first examined the expression of EZH2 in the kidney of sepsis-induced AKI (LPS injection) mice and LPS-stimulated tubular epithelial cells. We next constructed the EZH2 knockout mice to further confirm the effects of EZH2 on apoptosis and inflammatory response in AKI. And the inflammatory level of epithelial cells can be reflected by detecting chemokines and the chemotaxis of macrophages. Subsequently, we constructed the EZH2 knocked-down cells again and performed Chromatin Immunoprecipitation sequencing to screen out the target genes regulated by EZH2 and the enrichment pathway. Then we confirmed the EZH2 target gene and its regulatory pathway in vivo and in vitro experiments. Experimental results were finally confirmed using another in vivo model of sepsis-induced AKI (cecal perforation ligation). Results: The study found that EZH2 was upregulated in sepsis-induced AKI and that silencing EZH2 could reduce renal tubular injury by decreasing apoptosis and inflammatory response of tubular epithelial cells. EZH2 knockout mice showed significantly reduced renal inflammation and macrophage infiltration. Chromatin immunoprecipitation sequencing and polymerase chain reaction identified Sox9 as a target of EZH2. EZH2 was found to be enriched on the promoter of Sox9. Silencing EZH2 resulted in a significant increase in the transcriptional level of Sox9 and activation of the Wnt/ß-catenin signaling pathway. The study further reversed the effects of EZH2 silencing by silencing Sox9 or administering the Wnt/ß-catenin inhibitor icg001. It was also found that Sox9 positively regulated the expression of ß-catenin and its downstream pathway-related genes. Finally, the study showed that the EZH2 inhibitor 3-deazaneplanocin A significantly alleviated sepsis-induced AKI. Conclusion: Our results indicate that silencing EZH2 can protect renal function by relieving transcriptional inhibition of Sox9, activating the Wnt/ß-catenin pathway, and attenuating tubular epithelial apoptosis and inflammatory response of the renal interstitium. These results highlight the potential therapeutic value of targeting EZH2 in sepsis-induced AKI.


Assuntos
Injúria Renal Aguda , Proteína Potenciadora do Homólogo 2 de Zeste , Sepse , Animais , Camundongos , Injúria Renal Aguda/genética , Apoptose , beta Catenina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Inflamação , Lipopolissacarídeos , Camundongos Knockout , Sepse/complicações
8.
Biomedicines ; 11(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37893066

RESUMO

The potential association between calcium oxalate stones and renal fibrosis has been extensively investigated; however, the underlying mechanisms remain unclear. Ferroptosis is a novel form of cell death characterized by iron-dependent lipid peroxidation and regulated by acyl coenzyme A synthase long-chain family member 4 (ACSL4). Yes-associated protein (YAP), a transcriptional co-activator in the Hippo pathway, promotes ferroptosis by modulating ACSL4 expression. Nevertheless, the involvement of YAP-ACSL4 axis-mediated ferroptosis in calcium oxalate crystal deposition-induced renal fibrosis and its molecular mechanisms have not been elucidated. In this study, we investigated ACSL4 expression and ferroptosis activation in the kidney tissues of patients with calcium oxalate stones and in mice using single-cell sequencing, transcriptome RNA sequencing, immunohistochemical analysis, and Western blot analysis. In vivo and in vitro experiments demonstrated that inhibiting ferroptosis or ACSL4 mitigated calcium oxalate crystal-induced renal fibrosis. Furthermore, YAP expression was elevated in the kidney tissues of patients with calcium oxalate stones and in calcium oxalate crystal-stimulated human renal tubular epithelial cell lines. Mechanistically, in calcium oxalate crystal-stimulated human renal tubular epithelial cell lines, activated YAP translocated to the nucleus and enhanced ACSL4 expression, consequently inducing cellular ferroptosis. Moreover, YAP silencing suppressed ferroptosis by downregulating ACSL4 expression, thereby attenuating calcium oxalate crystal-induced renal fibrosis. Conclusively, our findings suggest that YAP-ACSL4-mediated ferroptosis represents an important mechanism underlying the induction of renal fibrosis by calcium oxalate crystal deposition. Targeting the YAP-ACSL4 axis and ferroptosis may therefore hold promise as a potential therapeutic approach for preventing renal fibrosis in patients with kidney stones.

9.
Front Surg ; 9: 942147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800114

RESUMO

Background: Fused renal pyramid (FRP) is a kidney anatomical structure which was first identified by us. The vascular anatomy of FRP exhibits different from that of the normal renal pyramid (NRP), manifested by the distribution of the ectopic interlobar arteries in FRP. In this study, we analyzed the effect of FRPs on bleeding when using calyx access in mini-percutaneous nephrolithotomy (PCNL). Patients and Methods: Overall, 633 patients who underwent ultrasound-guided single-tract mini-PCNL were divided into two groups according to the puncture method used: in group A, puncture was performed through the axial direction of the renal calyx, the line from the apex of the fornix to the center of the neck plane under B-mode ultrasound guidance; and in group B, Doppler ultrasound-guided axillary puncture through calyces corresponding to NRPs when the plane of renal column blood vessels on both sides was selected or calyx puncture through the hypovascular area of the FRPs. Relevant demographic and clinical data were retrospectively analyzed. Results: The two groups exhibited similar baseline characteristics. No significant differences were found in hemoglobin reduction, puncture site, tract size, postoperative creatinine level, or stone-free rate between the two groups (P > 0.05). Blood transfusion and embolization rates in group B were significantly lower than those in group A (P = 0.03 and 0.045, respectively). No differences were found between the two groups in terms of persistent pain, hydrothorax, fever, subcapsular hematoma, and urosepsis (P > 0.05). The overall complication rate was not significantly different between the two groups (P = 0.505). Conclusions: FRP is a non-negligible anatomical structure that may cause hemorrhage when using calyx access. Doppler ultrasound can identify ectopic blood vessels in FRPs to reduce bleeding during calyx access in mini-PCNL procedures.

10.
Int J Mol Med ; 49(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35059728

RESUMO

An increasing number of inflammatory responses and alternative splicing (AS) have been recently reported to be associated with various kidney diseases. The effect of inflammatory response on acute kidney injury (AKI) has not been fully clarified. In the present study, a mouse model of AKI induced by cisplatin and ischemia­reperfusion (IR) was established and genome­wide profiling analysis and identification of differentially expressed genes (DEGs) in kidney tissue was conducted by Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein­protein interaction (PPI) network analysis and RT­qPCR. The results revealed that common DEGs in AKI induced by cisplatin and IR were enriched in the inflammatory response pathway, including hub genes CSF­1, CXCL1, CXCL10, IL­1ß, IL­34, IL­6 and TLR2. AS in AKI was initially reported. Cisplatin­induced AS was enriched in the phosphorylation pathway, involving regulated AS genes CSNK1A1, PAK2, CRK, ADK and IKBKB. IR­induced AS was enriched in apoptosis and proliferation pathways, including DEGs ZDHHC16, BCL2L1 and FGF1 regulated by AS. The ability of RNA­binding proteins (RBPs) to regulate AS was coordinated with the function of context­dependent genetic mechanisms. A total of 49 common differentially expressed RBP genes were screened. RNA binding fox­1 homolog 1 (RBFOX1) was revealed to be the top downregulated gene. The relative levels of RBFOX1 in the nuclei of mouse renal tubular epithelial cells in mRNA and proteins were downregulated by cisplatin and IR. Moreover, the biological functions of RBFOX1 were investigated in human renal proximal tubular epithelial cells (HK­2 cells). Results of in vitro experiments revealed that exogenous RBFOX1 inhibited inflammation and oxidative stress to reduce hypoxia/reoxygenation­induced apoptosis of HK­2 cells. This phenomenon may be related to the inhibition of NF­κB and the activation of the NRF2/HO­1 signaling pathway. In conclusion, the inflammatory cytokines, AS and RBPs in AKI were analyzed in the present study via whole transcriptome sequencing. It was revealed that the RBP gene RBFOX1 was involved in the pathogenesis of AKI. Thus, the present study provided novel insights into the mechanism of AKI pathogenesis.


Assuntos
Injúria Renal Aguda , Processamento Alternativo , Fatores de Processamento de RNA , Injúria Renal Aguda/genética , Processamento Alternativo/genética , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Camundongos , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/genética
11.
Front Physiol ; 13: 923239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755446

RESUMO

Acute renal injury (AKI) is a complex clinical syndrome, involving a series of pathophysiological processes, in which inflammation plays a key role. Identification and verification of gene signatures associated with inflammatory onset and progression are imperative for understanding the molecular mechanisms involved in AKI pathogenesis. Non-coding RNAs (ncRNAs), involved in epigenetic modifications of inflammatory responses, are associated with the aberrant expression of inflammation-related genes in AKI. However, its regulatory role in gene expression involves precise transcriptional regulation mechanisms which have not been fully elucidated in the complex and volatile inflammatory response of AKI. In this study, we systematically review current research on the intrinsic molecular mechanisms of ncRNAs that regulate the inflammatory response in AKI. We aim to provide potential research directions and strategies for developing ncRNA-targeted gene therapies as an intervention for the inflammatory damage in AKI.

12.
Oxid Med Cell Longev ; 2022: 3846217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656025

RESUMO

Ferroptosis, a novel form of regulated cell death characterized by disrupted iron metabolism and the accumulation of lipid peroxides, has exhibited enormous potential in the therapy of cancer particularly clear cell renal cell carcinoma (ccRCC). Luteolin (Lut), a natural flavonoid widely existing in various fruits and vegetables, has been proven to exert potent anticancer activity in vitro and in vivo. However, previous studies on the anticancer mechanism of Lut have been shown in apoptosis but not ferroptosis. In the present study, we identified that Lut substantially inhibited the survival of ccRCC in vitro and in vivo, and this phenomenon was accompanied by excessively increased intracellular Fe2+ and abnormal depletion of GSH. In addition, Lut induced the imbalance of mitochondrial membrane potential, classical morphological alterations of mitochondrial ferroptosis, generation of ROS, and occurrence of lipid peroxidation in an iron-dependent manner in ccRCC cells. However, these alterations induced by Lut could be reversed to some extent by the iron ion chelator deferiprone or the ferroptosis inhibitor ferrostatin-1, indicating that ccRCC cells treated with Lut underwent ferroptosis. Mechanistically, molecular docking further established that Lut probably promoted the heme degradation and accumulation of labile iron pool (LIP) by excessively upregulating the HO-1 expression, which led to the Fenton reaction, GSH depletion, and lipid peroxidation in ccRCC, whereas blocking this signaling pathway evidently rescued the Lut-induced cell death of ccRCC by inhibiting ferroptosis. Altogether, the current study shows that the natural compound monomer Lut exerted anticancer efficacy by excessively upregulating HO-1 expression and activating LIP to trigger ferroptosis in ccRCC and could be a promising and potent drug candidate for ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Ferroptose , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Ferro/metabolismo , Neoplasias Renais/tratamento farmacológico , Peroxidação de Lipídeos , Luteolina/farmacologia , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo
13.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230734

RESUMO

Cisplatin is the first-line chemotherapy for advanced or metastatic bladder cancer. Nevertheless, approximately half of patients with BCa are insensitive to cisplatin therapy or develop cisplatin resistance during the treatment process. Therefore, it is especially crucial to investigate ways to enhance the sensitivity of tumor cells to cisplatin. Transcription factor AP-2 gamma (TFAP2C) is involved in cancer development and chemotherapy sensitivity. However, its relationship with chemotherapy has not been studied in BCa. In this study, we aimed to investigate the therapeutic potential of TFAP2C in human BCa. Results based on TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) data showed that TFAP2C expression was upregulated in BCa tissues and that its high expression was associated with poor prognosis. Meanwhile, we demonstrated the overexpression of TFAP2C in BCa clinical specimens. Subsequently, in vitro, we knocked down TFAP2C in BCa cells and found that TFAP2C knockdown further increased cell cycle arrest and apoptosis caused by cisplatin. In addition, the inhibitory effect of cisplatin on BCa cell migration and invasion was enhanced by TFAP2C knockdown. Our data indicated that cisplatin increased epidermal growth factor receptor (EGFR) and nuclear factor-kappaB (NF-κB) activation levels, but TFAP2C knockdown suppressed this effect. Finally, in vivo data further validated these findings. Our study showed that TFAP2C knockdown affected the activation levels of EGFR and NF-κB and enhanced the anti-tumor effects of cisplatin in vivo and in vitro. This provides a new direction to improve the efficacy of traditional cisplatin chemotherapy.

14.
Front Oncol ; 11: 701122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733776

RESUMO

Blue lasers are becoming more widely used in the diagnosis and treatment of bladder cancer; however, their photobiomodulation effects on bladder cancer cells remains unclear. The purpose of the current study was to explore the photobiomodulation effect of blue laser irradiation on bladder cancer progression and the associated mechanisms. The human uroepithelial cell line SV-HUC-1 and human bladder cancer cell lines T24 and EJ were exposed to blue laser irradiation (450 nm) at various energy densities, and cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and the levels of the proteins associated with the MAPK pathway proteins were determined. A significant decrease in cell viability was observed in a density-dependent manner after blue laser irradiation at > 4 J/cm2 in both bladder cancer cell lines. However, the blue laser did not reduce cell viability in SV-HUC-1 cells until the energy density exceeded 16 J/cm2. Meanwhile, Ki67 levels, reflecting cell proliferation and senescence, were also significantly decreased after blue laser irradiation at 4 J/cm2 and 8 J/cm2 in the absence of cell cycle arrest. Moreover, blue laser irradiation at 4 J/cm2 and 8 J/cm2 caused a reduction in cell migration and invasion and also reduced the expression levels of MMP-2, MMP-9, Snail, N-cadherin, phospho-MEK and phospho-ERK, and elevated the expression levels of E-cadherin. Meanwhile ERK activator(tBHQ) significantly reversed the irradiation-induced suppression of proliferation, migration and invasion in T24 and EJ cell lines. The present study showed that blue laser irradiation inhibited bladder cancer proliferation in a density-dependent manner and inhibited bladder cancer progression by suppressing migration, invasion, and the EMT process in T24 and EJ cell lines. This inhibition was possibly mediated via suppression of the MAPK/MEK/ERK pathway. Thus, the use of a low-energy blue laser in the diagnosis and treatment of bladder cancer is possibly safe and may have an anti-tumor effect.

15.
Front Genet ; 12: 774155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938320

RESUMO

Purpose: Kidney stones is a common medical issue that mediates kidney injury and even kidney function loss. However, the exact pathogenesis still remains unclear. This study aimed to explore the potential competing endogenous RNA (ceRNA)-related pathogenesis of kidney stones and identify the corresponding immune infiltration signature. Methods: One mRNA and one long non-coding RNA (lncRNA) microarray dataset was obtained from the GEO database. Subsequently, we compared differentially expressed mRNAs (DE-mRNAs) and lncRNAs between Randall's plaques in patients with calcium oxalate (CaOx) stones and controls with normal papillary tissues. lncRNA-targeted miRNAs and miRNA-mRNA pairs were predicted using the online databases. lncRNA-related DE-mRNAs were identified using the Venn method, and GO and KEGG enrichment analyses were subsequently performed. The immune-related lncRNA-miRNA-mRNA ceRNA network was developed. The CIBERSORT algorithm was used to estimate the rate of immune cell infiltration in Randall's plaques. The ceRNA network and immune infiltration were validated in the glyoxylate-induced hyperoxaluric mouse model and oxalate-treated HK-2 cells. Results: We identified 2,340 DE-mRNAs and 929 DE-lncRNAs between Randall's plaques in patients with CaOx stones and controls with normal papillary tissues. lncRNA-related DE-mRNAs were significantly enriched in extracellular matrix organization and collagen-containing extracellular matrix, which were associated with kidney interstitial fibrosis. The immune-related ceRNA network included 10 lncRNAs, 23 miRNAs, and 20 mRNAs. Moreover, we found that M2 macrophages and resting mast cells were differentially expressed between Randall's plaques and normal tissues. Throughout kidney stone development, kidney tubular injury, crystal deposition, collagen fiber deposition, TGF-ß expression, infiltration of M1 macrophages, and activation of mast cells were more frequent in glyoxylate-induced hyperoxaluric mice compared with control mice. Nevertheless, M2 macrophage infiltration increased in early stages (day 6) and decreased as kidney stones progressed (day 12). Furthermore, treatment with 0.25 and 0.5 mM of oxalate for 48 h significantly upregulated NEAT1, PVT1, CCL7, and ROBO2 expression levels and downregulated hsa-miR-23b-3p, hsa-miR-429, and hsa-miR-139-5p expression levels in the HK-2 cell line in a dose-dependent manner. Conclusion: We found that significant expressions of ceRNAs (NEAT1, PVT1, hsa-miR-23b-3p, hsa-miR-429, hsa-miR-139-5p, CCL7, and ROBO2) and infiltrating immune cells (macrophages and mast cells) may be involved in kidney stone pathogenesis. These findings provide novel potential therapeutic targets for kidney stones.

16.
Int Immunopharmacol ; 99: 108022, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339961

RESUMO

Cisplatin is a highly effective and broad-spectrum anticancer drug for the clinical treatment of solid tumors. However, it causes acute kidney injury (AKI) in patients with cancer. Consequently, its clinical application is limited. The occurrence, development, and prognosis of AKI are closely associated with microRNA (miRNA), which needs validation as a biomarker, especially for the early stages of cisplatin-induced AKI. An example of miRNA is miR-132-3p, which plays important roles in inflammatory responses, cell proliferation, and apoptosis in a variety of diseases. However, variations in its expression, potential mechanisms, and downstream targets in cisplatin-induced AKI remain unclear. This study aimed to investigate the functions of miR-132-3p in cisplatin-induced AKI. Sequencing and qRT-PCR revealed that miR-132-3p was significantly upregulated in cisplatin-induced AKI models of mouse and human proximal renal tubular epithelial (HK-2) cells. Apoptosis and inflammatory responses were significantly suppressed by the inhibition of the miR-132-3p expression in cisplatin-stimulated HK-2 cells, and this suppression was blocked by miR-132-3p mimics. Bioinformatics and dual luciferase reporter gene assay identified the 3'- UTR of SIRT1 mRNA as a direct target of miR-132-3p. RNA-FISH and immunofluorescence co-localization demonstrated that miR-132-3p and SIRT1 directly combined and interacted in the cytoplasm of HK-2 cells. Mechanistically, the SIRT1 expression was suppressed and the NF-κB signaling pathway was activated by the upregulation of miR-132-3p in cisplatin-induced AKI. By contrast, the SIRT1 expression was upregulated after the inhibition of miR-132-3p. The ratios of p-p65/p65 and p-IκBα/IκBα were significantly reduced, and the expression levels of inflammatory biomarkers and apoptotic proteins induced by cisplatin were obviously attenuated. Our results suggested that miR-132-3p exacerbated cisplatin-induced AKI by negatively regulating SIRT1 and activating the NF-κB signaling pathway. Therefore, targeting miR-132-3p might be a potential adjuvant therapy for ameliorating AKI in cisplatin-treated patients.


Assuntos
Injúria Renal Aguda/genética , Cisplatino/efeitos adversos , Epigênese Genética/efeitos dos fármacos , MicroRNAs/metabolismo , Sirtuína 1/genética , Acetilação , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Epigênese Genética/imunologia , Células Epiteliais , Humanos , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/imunologia , Túbulos Renais/patologia , Masculino , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , NF-kappa B/metabolismo
17.
Mol Med Rep ; 19(1): 221-230, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30483781

RESUMO

Chronic non­bacterial prostatitis (CNBP) is a common urinary disease and no standard treatments are available at present. Although autophagy serves an important role in a variety of chronic diseases, its role in CNBP is yet to be fully elucidated. Therefore, the present study aimed to investigate the effects of rapamycin­induced autophagy on CNBP by establishing a rat model. In the present study, a total of 30 male Sprague­Dawley rats were randomly divided into three groups (n=10 per group): i) Control, in which rats underwent a sham operation; ii) the model (CNBP), in which rats were castrated and administered 17ß­estradiol (0.25 mg/kg via subcutaneous injection) for 30 consecutive days; and iii) rapamycin treatment, in which rats were employed in accordance with the CNBP model, but also received a daily intraperitoneal injection of rapamycin (1 mg/kg) from the 16th day post­surgery for 15 days. Alterations in histology and the levels of autophagy­associated markers, and components of the NLRP3 inflammasome, were measured in the prostate tissues of the rats. The levels of molecules located further downstream of the NLRP3 inflammasome pathway, including interleukin (IL)­1ß and IL­18, were also measured. The results demonstrated that, compared with the control group, increased infiltration levels of inflammatory cells and glandular epithelial degeneration were observed in the prostate tissues of rats with CNBP. Furthermore, a significant increase in the concentration of IL­1ß and IL­18 in the serum, as well as the increased expression levels of NLRP3, ASC and caspase­1 in prostate tissues were also observed. In addition, reductions in the number of autophagosomes and the expression levels of autophagy­associated, including microtubule­associated protein 1 light chain 3ß (LC3B) and Beclin 1, were also detected in the CNBP group; however, treatment with rapamycin reversed these effects. Collectively, the findings of the present study indicated that the NLRP3 inflammasome­mediated inflammatory response was activated by a hormonal imbalance in the prostate glands of rats; however, these effects may be suppressed via rapamycin­induced autophagy.


Assuntos
Estradiol/toxicidade , Inflamassomos/efeitos dos fármacos , Inflamação/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Prostatite/tratamento farmacológico , Sirolimo/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Autofagia , Doença Crônica , Estrogênios/toxicidade , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Prostatite/induzido quimicamente , Prostatite/metabolismo , Prostatite/patologia , Ratos , Ratos Sprague-Dawley
18.
Urology ; 124: 38-45, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30445123

RESUMO

OBJECTIVE: To explore the clinical significance of the fused renal pyramid (FRP) in establishing percutaneous renal access, and the anatomic basis for avoiding vascular injury caused by puncturing through this renal pyramid with the aim of achieving accurate puncture in percutaneous nephrolithotomy. MATERIALS AND METHODS: Sixty-two cadaveric kidneys and 105 porcine kidneys were selected for the assessment of regional anatomy, to explore the anatomic structure of the FRP and determine its frequency. Then, we compared the effects of 4 different puncture paths on the occurrence of renal vascular injury when respectively punctured through the normal renal pyramid (group A), the centerline of one side pyramid of the FRP (group B), the center of the entire FRP (group C) and the renal column (group D). RESULTS: The incidence of FRP in human kidneys is not low. The artery in the kidney can be divided into 6 grades. The grade IV branch-interlobar artery courses through the FRP. There was significant difference in the degree of arterial injury between the group A and C (P = .003), while no significant difference between the group A and B (P = .151). There was significant difference in the proportion of interlolar artery injury between group A and C (P <.001), while no significant difference between group A and B (P = .239). CONCLUSION: It is necessary to carefully identify and bypass the FRP when establishing a percutaneous renal access. If unavoidable, the puncture path should be on the centerline of one side pyramid of the FRP.


Assuntos
Medula Renal/anatomia & histologia , Nefrolitotomia Percutânea/métodos , Animais , Vasos Sanguíneos/lesões , Humanos , Complicações Intraoperatórias/prevenção & controle , Rim/lesões , Medula Renal/irrigação sanguínea , Punções/efeitos adversos , Punções/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA