Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 55, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197059

RESUMO

BACKGROUND: Verticillium dahliae is a fungal pathogen that causes a vascular wilt on many economically important crops. Common fungal extracellular membrane (CFEM) domain proteins including secreted types have been implicated in virulence, but their roles in this pathogen are still unknown. RESULTS: Nine secreted small cysteine-rich proteins (VdSCPs) with CFEM domains were identified by bioinformatic analyses and their differential suppression of host immune responses were evaluated. Two of these proteins, VdSCP76 and VdSCP77, localized to the plant plasma membrane owing to their signal peptides and mediated broad-spectrum suppression of all immune responses induced by typical effectors. Deletion of either VdSCP76 or VdSCP77 significantly reduced the virulence of V. dahliae on cotton. Furthermore, VdSCP76 and VdSCP77 suppressed host immunity through the potential iron binding site conserved in CFEM family members, characterized by an aspartic acid residue in seven VdSCPs (Asp-type) in contrast with an asparagine residue (Asn-type) in VdSCP76 and VdSCP77. V. dahliae isolates carrying the Asn-type CFEM members were more virulent on cotton than those carrying the Asp-type. CONCLUSIONS: In the iron-insufficient xylem, V. dahliae is likely to employ the Asp-type CFEM members to chelate iron, and Asn-type CFEM members to suppress immunity, for successful colonization and propagation in host plants.


Assuntos
Verticillium , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Doenças das Plantas/microbiologia , Verticillium/metabolismo , Virulência
2.
J Plant Res ; 135(4): 609-626, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35534649

RESUMO

MicroRNAs (miRNAs) are known to play vital roles in coloration of leaves, flowers, and fruits in plants. However, their functions in spathe coloration are poorly known. Anthurium andraeanum is a popular ornamental plant with various spathe colors. In this study, small RNA and degradome libraries from three A. andraeanum cultivars with different-colored spathes were constructed and sequenced. Illumina sequencing resulted in 94 conserved miRNAs, and 34 novel miRNAs in total were then identified based on precursor sequences and hairpin structures. Differential expression analysis showed that 52, 51, and 49 miRNAs were differentially expressed in comparisons of orange- versus white-colored spathe, purple- versus white-colored spathe, and purple- versus orange-colored spathe, respectively. The expression patterns of miRNAs and their corresponding targets involved in spathe coloration were further analyzed, and displayed that miR156b and miR529 were highly abundant in the spathes with higher anthocyanin content. These two miRNAs co-targeted a gene encoding SPL17, which may function as a negative regulator in anthocyanin accumulation. In addition, miR408 was also abundantly expressed in purple- and orange-colored spathes, and its typical targets were also identified. This comprehensive integrated analysis provides insight into the miRNA-mediated genetic regulation in spathe coloration of A. andraeanum.


Assuntos
Araceae , MicroRNAs , Antocianinas/metabolismo , Araceae/genética , Araceae/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA
3.
BMC Plant Biol ; 19(1): 40, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678653

RESUMO

BACKGROUND: Anthurium andraeanum, an important ornamental flower, has to go through a growth-delaying period after transfer from tissue culture to soil, which requires time and extra costs. Furthermore, during this period, the plantlets are highly susceptible to bacterial infections, which results in impaired development and severe losses. Here, we aimed to address whether application of the endophytic fungus, Piriformospora indica protects the A. andraeanum root system during the critical propagation period, and whether P. indica reduce the mortality rate by stimulating the host's resistance against diseases. RESULTS: We demonstrate that P. indica shortens the recovery period of Anthurium, promotes growth and confers disease resistance. The beneficial effect of P. indica results in faster elongation of Anthurium roots early in the interaction. P. indica-colonized plants absorb more phosphorus and exhibit higher photosynthesis rates than uncolonized control plants. Moreover, higher activities of stress-related enzymes, of jasmonic acid levels and mRNA levels of jasmonic acid-responsive genes suggest that the fungus prepares the plant to respond more efficiently to potentially upcoming threats, including bacterial wilt. CONCLUSION: These results suggest that P. indica is a helpful symbiont for promoting Anthurium rooting and development. All our evidences are sufficient to support the disease resistance conferred by P. indica through the plant-fungal symbiosis. Furthermore, it implicates that P. indica has strong potential as bio-fertilizer for utilization in ornamental plant cultivation.


Assuntos
Araceae/imunologia , Basidiomycota/fisiologia , Endófitos/fisiologia , Araceae/crescimento & desenvolvimento , Araceae/microbiologia , Resistência à Doença , Raízes de Plantas/microbiologia
4.
Sci Rep ; 6: 35040, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713524

RESUMO

The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton.


Assuntos
Aclimatação , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Gossypium/crescimento & desenvolvimento , Ácido Abscísico/farmacologia , Clonagem Molecular , Secas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Gossypium/genética , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA