Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Annu Rev Biochem ; 90: 245-285, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33848425

RESUMO

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.


Assuntos
Lisina/metabolismo , Mamíferos/metabolismo , Sirtuínas/química , Sirtuínas/metabolismo , Acetilação , Acilação , Animais , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
2.
Annu Rev Biochem ; 85: 405-29, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27088879

RESUMO

Sirtuins are NAD(+)-dependent enzymes universally present in all organisms, where they play central roles in regulating numerous biological processes. Although early studies showed that sirtuins deacetylated lysines in a reaction that consumes NAD(+), more recent studies have revealed that these enzymes can remove a variety of acyl-lysine modifications. The specificities for varied acyl modifications may thus underlie the distinct roles of the different sirtuins within a given organism. This review summarizes the structure, chemistry, and substrate specificity of sirtuins with a focus on how different sirtuins recognize distinct substrates and thus carry out specific functions.


Assuntos
Histonas/química , NAD/química , Processamento de Proteína Pós-Traducional , Sirtuínas/química , Acilação , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Hidrólise , Cinética , Lipoilação , Modelos Moleculares , Ácido Mirístico/química , Ácido Mirístico/metabolismo , NAD/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Estrutura Secundária de Proteína , Sirtuínas/genética , Sirtuínas/metabolismo , Especificidade por Substrato , Ácido Succínico/química , Ácido Succínico/metabolismo , Thermotoga maritima/química , Thermotoga maritima/enzimologia
3.
Proc Natl Acad Sci U S A ; 121(18): e2319833121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648480

RESUMO

Sirt2 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylase that can remove both acetyl group and long-chain fatty acyl groups from lysine residues of many proteins. It was reported to affect inflammatory bowel disease (IBD) symptoms in a mouse model. However, conflicting roles were reported, with genetic knockout aggravating while pharmacological inhibition alleviating IBD symptoms. These seemingly conflicting reports cause confusion and deter further efforts in developing Sirt2 inhibitors as a potential treatment strategy for IBD. We investigated these conflicting reports and elucidated the role of Sirt2 in the mouse model of IBD. We essentially replicated these conflicting results and confirmed that Sirt2 inhibitors' protective effect is not through off-targets as two very different Sirt2 inhibitors (TM and AGK2) showed similar protection in the IBD mouse model. We believe that the differential effects of inhibitors and knockout are due to the fact that the Sirt2 inhibitors only inhibit some but not all the activities of Sirt2. This hypothesis is confirmed by the observation that a PROTAC degrader of Sirt2 did not protect mice in the IBD model, similar to Sirt2 knockout. Our study provides an interesting example where genetic knockout and pharmacological inhibition do not align and emphasizes the importance of developing substrate-dependent inhibitors. Importantly, we showed that the effect of Sirt2 inhibition in IBD is through regulating the gut epithelium barrier by inhibiting Arf6-mediated endocytosis of E-cadherin, a protein important for the intestinal epithelial integrity. This mechanistic understanding further supports Sirt2 as a promising therapeutic target for treating IBD.


Assuntos
Colite , Mucosa Intestinal , Sirtuína 2 , Animais , Humanos , Camundongos , Caderinas/metabolismo , Caderinas/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Modelos Animais de Doenças , Furanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinolinas , Sirtuína 2/metabolismo , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/genética
4.
Proc Natl Acad Sci U S A ; 121(5): e2307515121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252833

RESUMO

Protein lipidation plays critical roles in regulating protein function and localization. However, the chemical diversity and specificity of fatty acyl group utilization have not been investigated using untargeted approaches, and it is unclear to what extent structures and biosynthetic origins of S-acyl moieties differ from N- and O-fatty acylation. Here, we show that fatty acylation patterns in Caenorhabditis elegans differ markedly between different amino acid residues. Hydroxylamine capture revealed predominant cysteine S-acylation with 15-methylhexadecanoic acid (isoC17:0), a monomethyl branched-chain fatty acid (mmBCFA) derived from endogenous leucine catabolism. In contrast, enzymatic protein hydrolysis showed that N-terminal glycine was acylated almost exclusively with straight-chain myristic acid, whereas lysine was acylated preferentially with two different mmBCFAs and serine was acylated promiscuously with a broad range of fatty acids, including eicosapentaenoic acid. Global profiling of fatty acylated proteins using a set of click chemistry-capable alkyne probes for branched- and straight-chain fatty acids uncovered 1,013 S-acylated proteins and 510 hydroxylamine-resistant N- or O-acylated proteins. Subsets of S-acylated proteins were labeled almost exclusively by either a branched-chain or a straight-chain probe, demonstrating acylation specificity at the protein level. Acylation specificity was confirmed for selected examples, including the S-acyltransferase DHHC-10. Last, homology searches for the identified acylated proteins revealed a high degree of conservation of acylation site patterns across metazoa. Our results show that protein fatty acylation patterns integrate distinct branches of lipid metabolism in a residue- and protein-specific manner, providing a basis for mechanistic studies at both the amino acid and protein levels.


Assuntos
Aminoácidos , Caenorhabditis elegans , Animais , Acilação , Ácidos Graxos , Hidroxilamina , Hidroxilaminas
5.
Nature ; 586(7829): 434-439, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029007

RESUMO

Cysteine palmitoylation (S-palmitoylation) is a reversible post-translational modification that is installed by the DHHC family of palmitoyltransferases and is reversed by several acyl protein thioesterases1,2. Although thousands of human proteins are known to undergo S-palmitoylation, how this modification is regulated to modulate specific biological functions is poorly understood. Here we report that the key T helper 17 (TH17) cell differentiation stimulator, STAT33,4, is subject to reversible S-palmitoylation on cysteine 108. DHHC7 palmitoylates STAT3 and promotes its membrane recruitment and phosphorylation. Acyl protein thioesterase 2 (APT2, also known as LYPLA2) depalmitoylates phosphorylated STAT3 (p-STAT3) and enables it to translocate to the nucleus. This palmitoylation-depalmitoylation cycle enhances STAT3 activation and promotes TH17 cell differentiation; perturbation of either palmitoylation or depalmitoylation negatively affects TH17 cell differentiation. Overactivation of TH17 cells is associated with several inflammatory diseases, including inflammatory bowel disease (IBD). In a mouse model, pharmacological inhibition of APT2 or knockout of Zdhhc7-which encodes DHHC7-relieves the symptoms of IBD. Our study reveals not only a potential therapeutic strategy for the treatment of IBD but also a model through which S-palmitoylation regulates cell signalling, which might be broadly applicable for understanding the signalling functions of numerous S-palmitoylation events.


Assuntos
Diferenciação Celular , Colite/imunologia , Colite/patologia , Lipoilação , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Células Th17/citologia , Células Th17/imunologia , Acetiltransferases/deficiência , Acetiltransferases/genética , Acetiltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Colite/tratamento farmacológico , Colite/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Transporte Proteico , Células Th17/metabolismo , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/metabolismo , Regulação para Cima
6.
Mol Cell Proteomics ; 23(2): 100709, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154691

RESUMO

Understanding the molecular functions of less-studied proteins is an important task of life science research. Despite reports of basic leucine zipper and W2 domain-containing protein 2 (BZW2) promoting cancer progression first emerging in 2017, little is known about its molecular function. Using a quantitative proteomic approach to identify its interacting proteins, we found that BZW2 interacts with both endoplasmic reticulum (ER) and mitochondrial proteins. We thus hypothesized that BZW2 localizes to and promotes the formation of ER-mitochondria contact sites and that such localization would promote calcium transport from ER to the mitochondria and promote ATP production. Indeed, we found that BZW2 localized to ER-mitochondria contact sites and that BZW2 knockdown decreased ER-mitochondria contact, mitochondrial calcium levels, and ATP production. These findings provide key insights into molecular functions of BZW2, the potential role of BZW2 in cancer progression, and highlight the utility of interactome data in understanding the function of less-studied proteins.


Assuntos
Cálcio , Neoplasias , Humanos , Cálcio/metabolismo , Membranas Associadas à Mitocôndria , Proteômica , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Neoplasias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(11): e2117013119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259022

RESUMO

SignificanceThe study provided a long-sought molecular mechanism that could explain the link between fatty acid metabolism and cancer metastasis. Further understanding may lead to new strategies to inhibit cancer metastasis. The chemical proteomic approach developed here will be useful for discovering other regulatory mechanisms of protein function by small molecule metabolites.


Assuntos
Acil Coenzima A/metabolismo , Nucleosídeo NM23 Difosfato Quinases/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias da Mama , Endocitose , Feminino , Humanos , Metástase Neoplásica , Neoplasias/etiologia , Ligação Proteica , Proteoma , Proteômica/métodos
8.
Proc Natl Acad Sci U S A ; 119(45): e2200477119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322753

RESUMO

IGF2BP2 binds to a number of RNA transcripts and has been suggested to function as a tumor promoter, although little is known regarding the mechanisms that regulate its roles in RNA metabolism. Here we demonstrate that IGF2BP2 binds to the 3' untranslated region of the transcript encoding ATP6V1A, a catalytic subunit of the vacuolar ATPase (v-ATPase), and serves as a substrate for the NAD+-dependent deacetylase SIRT1, which regulates how IGF2BP2 affects the stability of the ATP6V1A transcript. When sufficient levels of SIRT1 are expressed, it catalyzes the deacetylation of IGF2BP2, which can bind to the ATP6V1A transcript but does not mediate its degradation. However, when SIRT1 expression is low, the acetylated form of IGF2BP2 accumulates, and upon binding to the ATP6V1A transcript recruits the XRN2 nuclease, which catalyzes transcript degradation. Thus, the stability of the ATP6V1A transcript is significantly compromised in breast cancer cells when SIRT1 expression is low or knocked-down. This leads to a reduction in the expression of functional v-ATPase complexes in cancer cells and to an impairment in their lysosomal activity, resulting in the production of a cellular secretome consisting of increased numbers of exosomes enriched in ubiquitinated protein cargo and soluble hydrolases, including cathepsins, that together combine to promote tumor cell survival and invasiveness. These findings describe a previously unrecognized role for IGF2BP2 in mediating the degradation of a messenger RNA transcript essential for lysosomal function and highlight how its sirtuin-regulated acetylation state can have significant biological and disease consequences.


Assuntos
Neoplasias , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sirtuína 1/metabolismo , RNA/metabolismo , Processos Neoplásicos , Lisossomos/genética , Lisossomos/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149557

RESUMO

N-myristoylation on glycine is an irreversible modification that has long been recognized to govern protein localization and function. In contrast, the biological roles of lysine myristoylation remain ill-defined. We demonstrate that the cytoplasmic scaffolding protein, gravin-α/A kinase-anchoring protein 12, is myristoylated on two lysine residues embedded in its carboxyl-terminal protein kinase A (PKA) binding domain. Histone deacetylase 11 (HDAC11) docks to an adjacent region of gravin-α and demyristoylates these sites. In brown and white adipocytes, lysine myristoylation of gravin-α is required for signaling via ß2- and ß3-adrenergic receptors (ß-ARs), which are G protein-coupled receptors (GPCRs). Lysine myristoylation of gravin-α drives ß-ARs to lipid raft membrane microdomains, which results in PKA activation and downstream signaling that culminates in protective thermogenic gene expression. These findings define reversible lysine myristoylation as a mechanism for controlling GPCR signaling and highlight the potential of inhibiting HDAC11 to manipulate adipocyte phenotypes for therapeutic purposes.


Assuntos
Adipócitos/metabolismo , Histona Desacetilases/metabolismo , Lisina/metabolismo , Células 3T3-L1 , Acilação , Animais , Regulação da Expressão Gênica , Histona Desacetilases/genética , Humanos , Lisina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Mol Cell Proteomics ; 21(8): 100268, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839996

RESUMO

Active mutations in the RAS genes are found in ∼30% of human cancers. Although thought to have overlapping functions, RAS isoforms show preferential activation in human tumors, which prompted us to employ a comparative and quantitative proteomics approach to generate isoform-specific and nucleotide-dependent interactomes of the four RAS isoforms, KRAS4A, KRAS4B, HRAS, and NRAS. Many isoform-specific interacting proteins were identified, including HRAS-specific CARM1 and CHK1 and KRAS-specific PIP4K2C and IPO7. Comparing the interactomes of WT and constitutively active G12D mutant of RAS isoforms, we identified several potential previously unknown effector proteins of RAS, one of which was recently reported while this article was in preparation, RADIL. These interacting proteins play important roles as knockdown or pharmacological inhibition leads to potent inhibition of cancer cells. The HRAS-specific interacting protein CARM1 plays a role in HRAS-induced senescence, with CARM1 knockdown or inhibition selectively increasing senescence in HRAS-transformed cells but not in KRAS4B-transformed cells. By revealing new isoform-specific and nucleotide-dependent RAS interactors, the study here provides insights to help understand the overlapping functions of the RAS isoforms.


Assuntos
Neoplasias , Proteômica , Humanos , Mutação , Nucleotídeos , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)
11.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507998

RESUMO

Diphthamide, a modification found only on translation elongation factor 2 (EF2), was proposed to suppress -1 frameshifting in translation. Although diphthamide is conserved among all eukaryotes, exactly what proteins are affected by diphthamide deletion is not clear in cells. Through genome-wide profiling for a potential -1 frameshifting site, we identified that the target of rapamycin complex 1 (TORC1)/mammalian TORC1 (mTORC1) signaling pathway is affected by deletion of diphthamide. Diphthamide deficiency in yeast suppresses the translation of TORC1-activating proteins Vam6 and Rtc1. Interestingly, TORC1 signaling also promotes diphthamide biosynthesis, suggesting that diphthamide forms a positive feedback loop to promote translation under nutrient-rich conditions. Our results provide an explanation for why diphthamide is evolutionarily conserved and why diphthamide deletion can cause severe developmental defects.


Assuntos
Histidina/análogos & derivados , Fator 2 de Elongação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Histidina/química , Histidina/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
Biochemistry ; 62(2): 543-553, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36548985

RESUMO

Nonalcoholic fatty liver disease is a major risk factor for hepatocellular carcinoma (HCC). Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) augments lipid accumulation (steatosis), inflammation, and tumorigenesis, thereby promoting the whole spectrum of this disease process. Targeting AEG-1 is a potential interventional strategy for nonalcoholic steatohepatitis (NASH) and HCC. Thus, proper understanding of the regulation of this molecule is essential. We found that AEG-1 is palmitoylated at residue cysteine 75 (Cys75). Mutation of Cys75 to serine (Ser) completely abolished AEG-1 palmitoylation. We identified ZDHHC6 as a palmitoyltransferase catalyzing the process in HEK293T cells. To obtain insight into how palmitoylation regulates AEG-1 function, we generated knock-in mice by CRISPR/Cas9 in which Cys75 of AEG-1 was mutated to Ser (AEG-1-C75S). No developmental or anatomical abnormality was observed between AEG-1-wild type (AEG-1-WT) and AEG-1-C75S littermates. However, global gene expression analysis by RNA-sequencing unraveled that signaling pathways and upstream regulators, which contribute to cell proliferation, motility, inflammation, angiogenesis, and lipid accumulation, were activated in AEG-1-C75S hepatocytes compared to AEG-1-WT. These findings suggest that AEG-1-C75S functions as dominant positive and that palmitoylation restricts oncogenic and NASH-promoting functions of AEG-1. We thus identify a previously unknown regulatory mechanism of AEG-1, which might help design new therapeutic strategies for NASH and HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Cisteína/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lipoilação , Astrócitos/metabolismo , Astrócitos/patologia , Células HEK293 , Inflamação , Lipídeos , Proteínas de Ligação a RNA/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
13.
J Am Chem Soc ; 145(12): 6811-6822, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36930461

RESUMO

The reversible acetylation of histone lysine residues is controlled by the action of acetyltransferases and deacetylases (HDACs), which regulate chromatin structure and gene expression. The sirtuins are a family of NAD-dependent HDAC enzymes, and one member, sirtuin 6 (Sirt6), influences DNA repair, transcription, and aging. Here, we demonstrate that Sirt6 is efficient at deacetylating several histone H3 acetylation sites, including its canonical site Lys9, in the context of nucleosomes but not free acetylated histone H3 protein substrates. By installing a chemical warhead at the Lys9 position of histone H3, we trap a catalytically poised Sirt6 in complex with a nucleosome and employ this in cryo-EM structural analysis. The structure of Sirt6 bound to a nucleosome reveals extensive interactions between distinct segments of Sirt6 and the H2A/H2B acidic patch and nucleosomal DNA, which accounts for the rapid deacetylation of nucleosomal H3 sites and the disfavoring of histone H2B acetylation sites. These findings provide a new framework for understanding how HDACs target and regulate chromatin.


Assuntos
Nucleossomos , Sirtuínas , Histonas/química , Cromatina , Sirtuínas/metabolismo , Acetilação , Glicosiltransferases/metabolismo , Catálise
14.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021547

RESUMO

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Assuntos
Leucemia Mieloide Aguda , Sirtuína 3 , Humanos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Proteômica , Células-Tronco Neoplásicas/metabolismo , Metabolismo dos Lipídeos , Homeostase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Colesterol
15.
Proc Natl Acad Sci U S A ; 117(24): 13447-13456, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482854

RESUMO

Precisely controlling the activation of transcription factors is crucial for physiology. After a transcription factor is activated and carries out its transcriptional activity, it also needs to be properly deactivated. Here, we report a deactivation mechanism of HIF-1 and several other oncogenic transcription factors. HIF-1 promotes the transcription of an ADP ribosyltransferase, TiPARP, which serves to deactivate HIF-1. Mechanistically, TiPARP forms distinct nuclear condensates or nuclear bodies in an ADP ribosylation-dependent manner. The TiPARP nuclear bodies recruit both HIF-1α and an E3 ubiquitin ligase HUWE1, which promotes the ubiquitination and degradation of HIF-1α. Similarly, TiPARP promotes the degradation of c-Myc and estrogen receptor. By suppressing HIF-1α and other oncogenic transcription factors, TiPARP exerts strong antitumor effects both in cell culture and in mouse xenograft models. Our work reveals TiPARP as a negative-feedback regulator for multiple oncogenic transcription factors, provides insights into the functions of protein ADP-ribosylation, and suggests activating TiPARP as an anticancer strategy.


Assuntos
Núcleo Celular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , ADP-Ribosilação , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptor alfa de Estrogênio/metabolismo , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteínas de Transporte de Nucleosídeos , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Biochemistry ; 61(17): 1874-1882, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35995428

RESUMO

Protein post-translational modifications serve to regulate a broad range of cellular functions including signal transduction, transcription, and metabolism. Protein lysine residues undergo many post-translational acylations and are regulated by a range of enzymes, such as histone acetyl transferases (HATs) and histone deacetylases (HDACs). KAT2A, well characterized as a lysine acetyltransferase for both histone and nonhistone substrates, has been reported to tolerate additional acyl-CoA substrates, such as succinyl-CoA, and shows nonacetyl transferase activity in specific biological contexts. In this work, we investigate the acyl-CoA substrate preference of KAT2A and attempt to determine whether and to what extent additional acyl-CoA substrates may be utilized by KAT2A in a cellular context. We show that while KAT2A can bind and utilize malonyl-CoA, its activity with succinyl-CoA or glutaryl-CoA is very weak, and acetylation is still the most efficient activity for KAT2A in vitro and in cells.


Assuntos
Histonas , Lisina Acetiltransferases , Acetilação , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Lisina Acetiltransferases/metabolismo , Processamento de Proteína Pós-Traducional
17.
J Am Chem Soc ; 144(8): 3360-3364, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175758

RESUMO

We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-Terminal tail site-specifically modified acetylated, lactylated, and ß-hydroxybutyrylated histone H2Bs were incorporated into nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and epigenetics.


Assuntos
Histonas , Sirtuínas , Cromatina , Histona Desacetilases/genética , Histonas/química , Nucleossomos
18.
FASEB J ; 35(10): e21841, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582046

RESUMO

Sirtuins are a family of NAD+ -dependent deacetylases implicated in a wide variety of age-associated pathologies, including cardiovascular disorders. Among the seven mammalian sirtuins, SIRT2 modulates various cellular processes through the deacetylation or deacylation of their target proteins. Notably, the levels of SIRT2 in the heart decline with age and other pathological conditions, leading to cardiovascular dysfunction. In the present review, we discuss the emerging roles of SIRT2 in cardiovascular dysfunction and heart failure associated with factors like age, hypertension, oxidative stress, and diabetes. We also discuss the potential of using inhibitors to study the unexplored role of SIRT2 in the heart. While SIRT2 undoubtedly plays a crucial role in the cardiovascular system, its functions are only beginning to be understood, making it an attractive candidate for further research in the field.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Estresse Oxidativo , Sirtuína 2/metabolismo , Acetilação , Animais , Doenças Cardiovasculares/metabolismo , Humanos
19.
Biochem J ; 478(23): 4071-4092, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34871367

RESUMO

The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.


Assuntos
Antivirais/uso terapêutico , Imunidade Inata , NAD/metabolismo , Viroses/tratamento farmacológico , ADP-Ribosil Ciclase 1/metabolismo , Proteínas do Domínio Armadillo/metabolismo , COVID-19/imunologia , Proteínas do Citoesqueleto/metabolismo , Humanos , NAD/imunologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Domínios Proteicos , SARS-CoV-2 , Sirtuínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Viroses/imunologia , Tratamento Farmacológico da COVID-19
20.
Proc Natl Acad Sci U S A ; 116(12): 5487-5492, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819897

RESUMO

The smallest histone deacetylase (HDAC) and the only class IV HDAC member, HDAC11, is reported to regulate immune activation and tumorigenesis, yet its biochemical function is largely unknown. Here we identify HDAC11 as an efficient lysine defatty-acylase that is >10,000-fold more efficient than its deacetylase activity. Through proteomics studies, we hypothesized and later biochemically validated SHMT2 as a defatty-acylation substrate of HDAC11. HDAC11-catalyzed defatty-acylation did not affect the enzymatic activity of SHMT2. Instead, it affects the ability of SHMT2 to regulate type I IFN receptor ubiquitination and cell surface level. Correspondingly, HDAC11 depletion increased type I IFN signaling in both cell culture and mice. This study not only demonstrates that HDAC11 has an activity that is much more efficient than the corresponding deacetylase activity, but also expands the physiological functions of HDAC11 and protein lysine fatty acylation, which opens up opportunities to develop HDAC11-specific inhibitors as therapeutics to modulate immune responses.


Assuntos
Glicina Hidroximetiltransferase/metabolismo , Histona Desacetilases/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Acilação , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA