Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Eng Online ; 16(1): 62, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558778

RESUMO

BACKGROUND: Cephalometric radiography has been used for orthodontic and surgical treatment planning and assessment, and for quantifying mandibular growth. However, it remains unclear how head positioning errors and the level of examiner experience affect the reliability of such morphometric measurements. The current study aimed to bridge the gap by determining the intra-, inter-rater, and inter-session reliability of measurements of mandibular morphology with random head positioning errors as measured by a junior and a senior dentist. METHODS: Cone-beam computed tomography data of twelve mandibles were obtained with each rotated randomly away from the neutral position within the range of +3 and -3° along each of the anatomical axes to simulate six imaging trials. A synthetic cephalogram for each trial was obtained via a digitally reconstructed radiography (DRR) technique and eleven landmarks for twelve morphological parameters on the cephalogram were identified manually six times by a junior and a senior dentist. The procedure was repeated on another day within 5 days. Test-retest reliability was assessed in terms of an intra-class correlation coefficient (ICC) using a two-way mixed-effects model. RESULTS: Good to very good intra-rater (senior: ICC > 0.92; junior: ICC > 0.78), inter-rater (ICC > 0.70 for most parameters) and inter-session reliability (senior: ICC > 0.84; junior: ICC > 0.62) were found. Bland & Altman plots of inter-rater comparisons show that there were systematical biases between the examiners on most parameters, except for the distance between Gonion and Pogonion. CONCLUSIONS: The current results suggest that good to very good intra-rater, inter-rater and inter-session reliability can be achieved for most parameters with randomized head positioning errors; higher inter-session reliability can be achieved by more experienced examiners; and that long-term monitoring of mandibular growth based on cephalographic measurements should be made by the same more experienced examiner. The current DRR-based approach can be used to evaluate individual factors that affect the morphological measurements.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Cabeça , Processamento de Imagem Assistida por Computador , Mandíbula/anatomia & histologia , Mandíbula/diagnóstico por imagem , Erros Médicos , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes
2.
Biomed Eng Online ; 13: 133, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25208578

RESUMO

BACKGROUND: The current study aimed to compare the measurements of the mandible morphology using 3D cone beam computed tomography (CBCT) images with those using 2D CBCT-synthesized cephalograms; to quantify errors in measurements based on 2D synthesized cephalograms; and to clarify the effects such errors have on the description of the mandibular growth. METHODS: Mandibles of six miniature pigs were scanned monthly using CBCT over 12 months and the data were used to reconstruct the 3D bone models. Five anatomical landmarks were identified on each bone model, and the inter-marker distances and monthly distance changes were calculated and taken as the gold standard. Synthetic 2D cephalograms were also generated for each bone model using a digitally reconstructed radiography (DRR)-generation method. Errors in cephalogram measurements were determined as the differences between the calculated variables in cephalograms and the gold standard. The variations between cephalograms and the gold standard were also compared using paired t-tests. RESULTS: While the inter-marker distance increases varied among the marker pairs, all marker pairs increased their inter-marker distances gradually every month, reaching 50% of the total annual increases during the fourth and fifth months, and then slowing down in the subsequent months. The 2D measurements significantly underestimated most of the inter-marker distances throughout the monitoring period, in most of the monthly inter-marker distance changes during the first four months, and in the total growth (p < 0.05). CONCLUSIONS: Significant errors exist in the measurements using 2D synthesized cephalogram, underestimating the mandibular dimensions and their monthly changes in the early stages of growth, as well as the total annual growth. These results should be considered in dental treatment planning at the beginning of the treatment in order to control more precisely the treatment process and outcome.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Mandíbula/crescimento & desenvolvimento , Animais , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Animais , Modelos Teóricos , Intensificação de Imagem Radiográfica , Suínos , Porco Miniatura
3.
Front Bioeng Biotechnol ; 10: 854880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685094

RESUMO

Knowledge of mandibular growth and development is essential for diagnosis of malformation and early interception. A previous method of quantifying mandibular growth using the distances between selected anatomical landmarks over the growth period does not provide a complete, quantitative description of the continuous growth patterns. The current study aimed to bridge the gap by measuring the 3D continuous growth of the mandible in miniature pigs using cone-beam computerized tomography (CBCT). The mandibles of the pigs were CBCT-scanned monthly over 12 months, and the 3D mandibular models were reconstructed. A new non-linear, time-dependent osteometric modeling approach was developed to register two consecutive mandible models by searching for the corresponding points with the highest likelihood of matching the anatomical and morphological features so that the morphological changes patterns for each month could be described using color maps on the models. The morphological changes of the mandible were found to decrease anteriorly, with the condyle region and the posterior part of the ramus growing faster than the rest of the mandible. The condyle region showed the fastest growth rate and the posterior ramus the second during the growth period, while the middle and anterior corpus regions showed the slowest growth rates. In conclusion, the current results revealed the non-linear patterns and rates of morphological changes in different growth regions and the whole mandible. The new approach may also be useful for future studies on the growth of the mandible in other animals.

4.
PLoS One ; 9(5): e96540, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801528

RESUMO

The purpose of this study was to measure the long-term growth of the mandible in miniature pigs using 3D Cone-Beam Computerized Tomography (CBCT). The mandibles of the pigs were scanned monthly over 12 months using CBCT and the 3D mandibular models were reconstructed from the data. Seventeen anatomical landmarks were identified and classified into four groups of line segments, namely anteroposterior, superoinferior, mediolateral and anteroinferior. The inter-marker distances, inter-segmental angles, volume, monthly distance changes and percentage of changes were calculated to describe mandibular growth. The total changes of inter-marker distances were normalized to the initial values. All inter-marker distances increased over time, with the greatest mean normalized total changes in the superoinferior and anteroposterior groups (p<0.05). Monthly distance changes were greatest during the first four months and then reduced over time. Percentages of inter-marker distance changes were similar among the groups, reaching half of the overall growth around the 4th month. The mandibular volume growth increased non-linearly with time, accelerating during the first five months and slowing during the remaining months. The growth of the mandible was found to be anisotropic and non-homogeneous within the bone and non-linear over time, with faster growth in the ramus than in the body. These growth patterns appeared to be related to the development of the dentition, providing necessary space for the teeth to grow upward for occlusion and for the posterior teeth to erupt.


Assuntos
Mandíbula/crescimento & desenvolvimento , Porco Miniatura/fisiologia , Animais , Tomografia Computadorizada de Feixe Cônico/métodos , Dentição , Imageamento Tridimensional , Mandíbula/diagnóstico por imagem , Suínos , Dente/diagnóstico por imagem , Dente/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA