RESUMO
BACKGROUND: Colorectal cancer (CRC) is the second most common malignant tumor worldwide, and its incidence rate increases annually. Early diagnosis and treatment are crucial for improving the prognosis of patients with colorectal cancer. Circular RNAs are noncoding RNAs with a closed-loop structure that play a significant role in tumor development. However, the role of circular RNAs in CRC is poorly understood. METHODS: The circular RNA hsa_circ_0000467 was screened in CRC circRNA microarrays using a bioinformatics analysis, and the expression of hsa_circ_0000467 in CRC tissues was determined by in situ hybridization. The associations between the expression level of hsa_circ_0000467 and the clinical characteristics of CRC patients were evaluated. Then, the role of hsa_circ_0000467 in CRC growth and metastasis was assessed by CCK8 assay, EdU assay, plate colony formation assay, wound healing assay, and Transwell assay in vitro and in a mouse model of CRC in vivo. Proteomic analysis and western blotting were performed to investigate the effect of hsa_circ_0000467 on c-Myc signaling. Polysome profiling, RTâqPCR and dual-luciferase reporter assays were performed to determine the effect of hsa_circ_0000467 on c-Myc translation. RNA pull-down, RNA immunoprecipitation (RIP) and immunofluorescence staining were performed to assess the effect of hsa_circ_0000467 on eIF4A3 distribution. RESULTS: In this study, we found that the circular RNA hsa_circ_0000467 is highly expressed in colorectal cancer and is significantly correlated with poor prognosis in CRC patients. In vitro and in vivo experiments revealed that hsa_circ_0000467 promotes the growth and metastasis of colorectal cancer cells. Mechanistically, hsa_circ_0000467 binds eIF4A3 to suppress its nuclear translocation. In addition, it can also act as a scaffold molecule that binds eIF4A3 and c-Myc mRNA to form complexes in the cytoplasm, thereby promoting the translation of c-Myc. In turn, c-Myc upregulates its downstream targets, including the cell cycle-related factors cyclin D2 and CDK4 and the tight junction-related factor ZEB1, and downregulates E-cadherin, which ultimately promotes the growth and metastasis of CRC. CONCLUSIONS: Our findings revealed that hsa_circRNA_0000467 plays a role in the progression of CRC by promoting eIF4A3-mediated c-Myc translation. This study provides a theoretical basis and molecular target for the diagnosis and treatment of CRC.
Assuntos
Proliferação de Células , Neoplasias Colorretais , Fator de Iniciação 4A em Eucariotos , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc , RNA Circular , RNA Circular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Progressão da Doença , Linhagem Celular Tumoral , Masculino , Prognóstico , Feminino , Biossíntese de Proteínas , Movimento Celular/genética , Biomarcadores Tumorais/genética , RNA Helicases DEAD-boxRESUMO
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
RESUMO
Metabolic reprogramming is the survival rule of tumor cells, and tumor cells can meet their high metabolic requirements by changing the energy metabolism mode. Metabolic reprogramming of tumor cells is an important biochemical basis of tumor malignant phenotypes. Ras-related C3 botulinum toxin substrate 1 (Rac1) is abnormally expressed in a variety of tumors and plays an important role in the proliferation, invasion, and migration of tumor cells. However, the role of Rac1 in tumor metabolic reprogramming is still unclear. Herein, we revealed that Rac1 was highly expressed in colon cancer tissues and cell lines. Rac1 promotes the proliferation, migration, and invasion of colon cancer cells by upregulating SOX9, which as a transcription factor can directly bind to the promoters of HK2 and G6PD genes and regulate their transcriptional activity. Rac1 upregulates the expression of SOX9 through the PI3K/AKT signaling pathway. Moreover, Rac1 can promote glycolysis and the activation of the pentose phosphate pathway in colon cancer cells by mediating the axis of SOX9/HK2/G6PD. These findings reveal novel regulatory axes involving Rac1/SOX9/HK2/G6PD in the development and progression of colon cancer, providing novel promising therapeutic targets.
Assuntos
Neoplasias do Colo , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Neoplasias do Colo/genética , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Glucose/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Fatores de Transcrição SOX9/metabolismoRESUMO
Cancer cells prefer glycolysis to support their proliferation. Our previous studies have shown that the long palate, lung, and nasal epithelial cell clone 1 (LPLUNC1) can upregulate prohibitin 1 (PHB1) expression to inhibit the proliferation of nasopharyngeal carcinoma (NPC) cells. Given that PHB1 is an important regulator of cell energy metabolism, we explored whether and how LPLUNC1 regulated glucose glycolysis in NPC cells. LPLUNC1 or PHB1 overexpression decreased glycolysis and increased oxidative phosphorylation (OXPHOS)-related protein expression in NPC cells, promoting phosphorylated PHB1 nuclear translocation through 14-3-3σ. LPLUNC1 overexpression also increased p53 but decreased c-Myc expression in NPC cells, which were crucial for the decrease in glycolysis and increase in OXPHOS-related protein expression induced by LPLUNC1 overexpression. Finally, we found that treatment with all-trans retinoic acid (ATRA) reduced the viability and clonogenicity of NPC cells, decreased glycolysis, and increased OXPHOS-related protein expression by enhancing LPLUNC1 expression in NPC cells. Therefore, the LPLUNC1-PHB1-p53/c-Myc axis decreased glycolysis in NPC cells, and ATRA upregulated LPLUNC1 expression, ATRA maybe a promising drug for the treatment of NPC.
Assuntos
Neoplasias Nasofaríngeas , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patologia , Tretinoína/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Autoantígenos/metabolismoRESUMO
Prohibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
RESUMO
The overlapping metabolic reprogramming of cancer and immune cells is a putative determinant of the antitumor immune response in cancer. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune response through both the release of metabolites and affecting the expression of immune molecules, such as lactate, PGE2, arginine, etc. Actually, this energetic interplay between tumor and immune cells leads to metabolic competition in the tumor ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. More interestingly, metabolic reprogramming is also indispensable in the process of maintaining self and body homeostasis by various types of immune cells. At present, more and more studies pointed out that immune cell would undergo metabolic reprogramming during the process of proliferation, differentiation, and execution of effector functions, which is essential to the immune response. Herein, we discuss how metabolic reprogramming of cancer cells and immune cells regulate antitumor immune response and the possible approaches to targeting metabolic pathways in the context of anticancer immunotherapy. We also describe hypothetical combination treatments between immunotherapy and metabolic intervening that could be used to better unleash the potential of anticancer therapies.
Assuntos
Suscetibilidade a Doenças , Metabolismo Energético , Imunidade , Neoplasias/etiologia , Neoplasias/metabolismo , Imunidade Adaptativa , Biomarcadores , Biomarcadores Tumorais , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata , Redes e Vias Metabólicas , Neoplasias/patologia , Nutrientes/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologiaRESUMO
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Because the prognosis of DLBCL patients varies considerably, there is an urgent need to identify novel prognostic factors. In this study, we investigated the expression levels of the signalling enzyme 3-phosphoinositide-dependent protein kinase-1 (PDK1), the cell cycle regulatory enzyme Polo-like kinase 1 (PLK1) and the transcription factor (c-Myc) in DLBCL tissues and evaluated their clinical and prognostic significance. PDK1, PLK1 and c-Myc were detected by immunohistochemical staining of paraffin-embedded specimens from 152 DLBCL and 48 lymphadenitis patients. Expression levels were correlated with clinicopathological factors. PDK1, PLK1 and c-Myc were more commonly expressed in DLBCL specimens than in lymphadenitis specimens, and the expression of each protein correlated positively with that of the other two molecules. High PDK1, PLK1 and c-Myc expression, high international prognostic index score, high lactate dehydrogenase levels and late Ann Arbor stage were shown to correlate with shorter overall survival time. A multivariate Cox regression model showed that high expression levels of PLK1 and c-Myc were independent prognostic factors for DLBCL. Our findings indicate that PLK1 and c-Myc expression might be promising predictive biomarkers for DLBCL patients.
Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/análise , Proteínas de Ciclo Celular/análise , Linfoma Difuso de Grandes Células B/enzimologia , Proteínas Serina-Treonina Quinases/análise , Proteínas Proto-Oncogênicas c-myc/análise , Proteínas Proto-Oncogênicas/análise , Biomarcadores Tumorais/análise , Biópsia , Feminino , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Risco , Quinase 1 Polo-LikeRESUMO
Semiparametric smoothing methods are usually used to model longitudinal data, and the interest is to improve efficiency for regression coefficients. This paper is concerned with the estimation in semiparametric varying-coefficient models (SVCMs) for longitudinal data. By the orthogonal projection method, local linear technique, quasi-score estimation, and quasi-maximum likelihood estimation, we propose a two-stage orthogonality-based method to estimate parameter vector, coefficient function vector, and covariance function. The developed procedures can be implemented separately and the resulting estimators do not affect each other. Under some mild conditions, asymptotic properties of the resulting estimators are established explicitly. In particular, the asymptotic behavior of the estimator of coefficient function vector at the boundaries is examined. Further, the finite sample performance of the proposed procedures is assessed by Monte Carlo simulation experiments. Finally, the proposed methodology is illustrated with an analysis of an acquired immune deficiency syndrome (AIDS) dataset.
Assuntos
Síndrome da Imunodeficiência Adquirida/epidemiologia , Modelos Estatísticos , Método de Monte Carlo , Humanos , Estudos LongitudinaisRESUMO
Glycosylation, a key mode of protein modification in living organisms, is critical in regulating various biological functions by influencing protein folding, transportation, and localization. Changes in glycosylation patterns are a significant feature of cancer, are associated with a range of pathological activities in cancer-related processes, and serve as critical biomarkers providing new targets for cancer diagnosis and treatment. Glycoproteins like human epidermal growth factor receptor 2 (HER2) for breast cancer, alpha-fetoprotein (AFP) for liver cancer, carcinoembryonic antigen (CEA) for colon cancer, and prostate-specific antigen (PSA) for prostate cancer are all tumor biomarkers approved for clinical use. Here, we introduce the diversity of glycosylation structures and newly discovered glycosylation substrate-glycosylated RNA (glycoRNA). This article focuses primarily on tumor metastasis, immune evasion, metabolic reprogramming, aberrant ferroptosis responses, and cellular senescence to illustrate the role of glycosylation in cancer. Additionally, we summarize the clinical applications of protein glycosylation in cancer diagnostics, treatment, and multidrug resistance. We envision a promising future for the clinical applications of protein glycosylation.
RESUMO
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/ß-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Oncogênicas Virais/genética , Transdução de Sinais/genética , Neoplasias do Colo do Útero/genética , Carcinogênese , Proteínas E7 de Papillomavirus/genéticaRESUMO
Cellular metabolism is the fundamental process by which cells maintain growth and self-renewal. It produces energy, furnishes raw materials, and intermediates for biomolecule synthesis, and modulates enzyme activity to sustain normal cellular functions. Cellular metabolism is the foundation of cellular life processes and plays a regulatory role in various biological functions, including programmed cell death. Ferroptosis is a recently discovered form of iron-dependent programmed cell death. The inhibition of ferroptosis plays a crucial role in tumorigenesis and tumor progression. However, the role of cellular metabolism, particularly glucose and amino acid metabolism, in cancer ferroptosis is not well understood. Here, we reviewed glucose, lipid, amino acid, iron and selenium metabolism involvement in cancer cell ferroptosis to elucidate the impact of different metabolic pathways on this process. Additionally, we provided a detailed overview of agents used to induce cancer ferroptosis. We explained that the metabolism of tumor cells plays a crucial role in maintaining intracellular redox homeostasis and that disrupting the normal metabolic processes in these cells renders them more susceptible to iron-induced cell death, resulting in enhanced tumor cell killing. The combination of ferroptosis inducers and cellular metabolism inhibitors may be a novel approach to future cancer therapy and an important strategy to advance the development of treatments.
Assuntos
Ferroptose , Neoplasias , Humanos , Aminoácidos , Glucose , FerroRESUMO
Previous studies have demonstrated that diallyl disulfide (DADS) exhibits potent anti-tumor activity. However, the pharmacological actions of DADS in inhibiting the growth of colorectal cancer (CRC) cells have not been clarified. Herein, we show that DADS treatment impairs the activation of the pentose phosphate pathway (PPP) to decrease PRPP (5-phosphate ribose-1-pyrophosphate) production, enhancing DNA damage and cell apoptosis, and inhibiting the growth of CRC cells. Mechanistically, DADS treatment promoted POU2F1 K48-linked ubiquitination and degradation by attenuating the PI3K/AKT signaling to up-regulate TRIM21 expression in CRC cells. Evidently, TRIM21 interacted with POU2F1, and induced the K272 ubiquitination of POU2F1. The effects of DADS on the enhanced K272 ubiquitination of POU2F1, the PPP flux, PRPP production, DNA damage and cell apoptosis as well as the growth of CRC tumors in vivo were significantly mitigated by TRIM21 silencing or activating the PI3K signaling in CRC cells. Conversely, the effects of DADS were enhanced by TRIM21 over-expression or inhibiting the PI3K/AKT signaling in CRC cells. Collectively, our findings reveal a novel mechanism by which DADS suppresses the growth of CRC by promoting POU2F1 ubiquitination, and may aid in design of novel therapeutic intervention of CRC.
Assuntos
Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/análogos & derivados , Compostos Alílicos , Neoplasias Colorretais , Dissulfetos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/genética , Compostos Alílicos/farmacologia , Compostos Alílicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Fator 1 de Transcrição de Octâmero/genéticaRESUMO
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
RESUMO
Tonsillar neuroendocrine carcinoma has low incidence and poor prognosis, there is no standard treatment which is mainly by surgery, radiotherapy, or combined with chemotherapy. With announcement of the results of phase III clinical trials of sovantinib in extrapancreatic neuroendocrine carcinoma, sovantinib has shown potential in the treatment of neuroendocrine carcinoma. To our knowledge, there are no reports about the application of sovantinib in tonsillar neuroendocrine carcinoma. We reported a patient with large cell neuroendocrine carcinoma of tonsil, who had developed distant metastasis at the first diagnosis and was not effective after routine chemotherapy; and only temporary remission was achieved with the use of immunotherapy. Then with the subsequent change to sovantinib, long-term disease control without serious adverse reactions was achieved. Therefore, we propose that sovantinib is one of the important alternative treatments for advanced tonsillar neuroendocrine carcinoma.
Assuntos
Carcinoma Neuroendócrino , Tonsila Palatina , Humanos , Tonsila Palatina/patologia , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/patologiaRESUMO
Multi-source functional block-wise missing data arise more commonly in medical care recently with the rapid development of big data and medical technology, hence there is an urgent need to develop efficient dimension reduction to extract important information for classification under such data. However, most existing methods for classification problems consider high-dimensional data as covariates. In the paper, we propose a novel multinomial imputed-factor Logistic regression model with multi-source functional block-wise missing data as covariates. Our main contribution is to establishing two multinomial factor regression models by using the imputed multi-source functional principal component scores and imputed canonical scores as covariates, respectively, where the missing factors are imputed by both the conditional mean imputation and the multiple block-wise imputation approaches. Specifically, the univariate FPCA is carried out for the observable data of each data source firstly to obtain the univariate principal component scores and the eigenfunctions. Then, the block-wise missing univariate principal component scores instead of the block-wise missing functional data are imputed by the conditional mean imputation method and the multiple block-wise imputation method, respectively. After that, based on the imputed univariate factors, the multi-source principal component scores are constructed by using the relationship between the multi-source principal component scores and the univariate principal component scores; and at the same time, the canonical scores are obtained by the multiple-set canonial correlation analysis. Finally, the multinomial imputed-factor Logistic regression model is established with the multi-source principal component scores or the canonical scores as factors. Numerical simulations and real data analysis on ADNI data show the proposed method works well.
Assuntos
Fonte de Informação , Modelos Logísticos , Psicometria , Interpretação Estatística de DadosRESUMO
Metabolic reprogramming and epigenetic modifications are hallmarks of cancer cells. In cancer cells, metabolic pathway activity varies during tumorigenesis and cancer progression, indicating regulated metabolic plasticity. Metabolic changes are often closely related to epigenetic changes, such as alterations in the expression or activity of epigenetically modified enzymes, which may exert a direct or an indirect influence on cellular metabolism. Therefore, exploring the mechanisms underlying epigenetic modifications regulating the reprogramming of tumor cell metabolism is important for further understanding tumor pathogenesis. Here, we mainly focus on the latest studies on epigenetic modifications related to cancer cell metabolism regulations, including changes in glucose, lipid and amino acid metabolism in the cancer context, and then emphasize the mechanisms related to tumor cell epigenetic modifications. Specifically, we discuss the role played by DNA methylation, chromatin remodeling, noncoding RNAs and histone lactylation in tumor growth and progression. Finally, we summarize the prospects of potential cancer therapeutic strategies based on metabolic reprogramming and epigenetic changes in tumor cells.
Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Epigênese Genética , Metilação de DNA , Neoplasias/genética , Neoplasias/terapia , Transformação Celular Neoplásica/genéticaRESUMO
Head and neck squamous cell carcinoma (HNSC) is a kind of malignant tumor originating from the oropharynx, larynx, nasopharynx and oral cavity. The incidence of HNSC is increasing and it is the sixth malignant tumor in the world at present. "Cuprotosis" is a novel cuper-dependent cell death mode that is closely related to mitochondrial respiration. Tumorigenesis is closely related to the dysregulation of cell death. However, the relationship between cuprotosis and HNSC remains unclear. Here, we investigated the association between 10 cuprotosis-associated genes (CAGs) and HNSC using multi-omics public data. We found that CAGs had abnormal expression and significant genetic changes in HNSC, especially CDKN2A with 54% mutation rate. Expression of CAGs significantly correlates with the prognosis of HNSC patients. Moreover, the CAGs expression is correlated with the immune checkpoints expression and immune cells infiltration. These CAGs expression was associated with multiple drugs sensitivity of cancer cells, such as cisplatin and docetaxel. These findings indicate that CAGs are likely to serve an essential role in the diagnosis, prognosis, immunotherapy and drug therapy prediction of HNSC.
Assuntos
Cobre , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Relevância Clínica , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , ApoptoseRESUMO
Gastric diffuse large Bcell lymphoma (GDLBCL) is a common disease with an increasing incidence. However, the regulatory effect of exosomal programmed deathligand 1 (PDL1) on the immune microenvironment in GDLBCL is unclear. In the present study, the protein expression levels of exosomal PDL1 in the supernatants of cultured diffuse large Bcell lymphoma (DLBCL) cells and the plasma of patients with GDLBCL was assessed using immunoblotting. Exosomes derived from DLBCL cells were cocultured with T lymphocytes or injected into tumor xenograft mice by tail vein injection. The relationship between the protein expression level of exosomal PDL1 in the plasma and the clinical characteristics and immune microenvironmental parameters of GDLBCL was evaluated using immunoblotting and immunohistochemistry. High levels of exosomal PDL1 were found in the supernatants of cultured DLBCL cells. Exosomes with high levels of PDL1 promoted growth of tumors formed by DLBCL cells in vivo and inhibited the proliferation of T lymphocytes. Notably, the protein expression level of PDL1 in plasma exosomes derived from GDLBCL patients was significantly higher than that of healthy individuals. High levels of PDL1 in plasma exosomes were significantly associated with international prognostic index score, pathological type and advanced Lugano stage, which might lead to the poor prognosis of GDLBCL. Moreover, a high level of PDL1 in plasma exosomes was significantly associated with an immunosuppressive microenvironment in GDLBCL. Therefore, the results of the present study indicated that exosomal PDL1 inhibited the proliferation of T lymphocytes and promoted the formation of an immunosuppressive microenvironment in GDLBCL. High expression of exosomal PDL1 may suggest a poor prognosis of GDLBCL, and exosomal PDL1 in plasma may be a new diagnostic indicator for GDLBCL.
Assuntos
Exossomos , Linfoma Difuso de Grandes Células B , Neoplasias Gástricas , Microambiente Tumoral , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Exossomos/metabolismo , Imunossupressores/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/imunologiaRESUMO
Organoids are a class of multicellular structures with the capability of self-organizing and the characteristic of original tissues, they are generated from stem cells in 3D culture in vitro. Organoids can mimic the occurrence and progression of original tissues and widely used in disease models in recent years. The ability of tumor organoids to retain characteristic of original tumors make them unique for tumorigenesis and cancer therapy. However, the history of organoid development and the application of organoid technology in cancer therapy are not well understood. In this paper, we reviewed the history of organoids development, the culture methods of tumor organoids establishing and the applications of organoids in cancer research for better understanding the process of tumor development and providing better strategies for cancer therapy. The standardization of organoids cultivation facilitated the large-scale production of tumor organoids. Moreover, it was found that combination of tumor organoids and other cells such as immune cells, fibroblasts and nervous cells would better mimic the microenvironment of tumor progression. This might be important developing directions for tumor organoids in the future.
RESUMO
Metabolic reprogramming is one of the hallmarks of cancer. As nutrients are scarce in the tumor microenvironment (TME), tumor cells adopt multiple metabolic adaptations to meet their growth requirements. Metabolic reprogramming is not only present in tumor cells, but exosomal cargos mediates intercellular communication between tumor cells and non-tumor cells in the TME, inducing metabolic remodeling to create an outpost of microvascular enrichment and immune escape. Here, we highlight the composition and characteristics of TME, meanwhile summarize the components of exosomal cargos and their corresponding sorting mode. Functionally, these exosomal cargos-mediated metabolic reprogramming improves the "soil" for tumor growth and metastasis. Moreover, we discuss the abnormal tumor metabolism targeted by exosomal cargos and its potential antitumor therapy. In conclusion, this review updates the current role of exosomal cargos in TME metabolic reprogramming and enriches the future application scenarios of exosomes.