Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(1): 20-34, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37758243

RESUMO

Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Salinidade , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Planta ; 259(5): 100, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536457

RESUMO

MAIN CONCLUSION: SbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation. Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils. However, its molecular mechanisms of Cd-tolerance and -accumulation remain largely unknown. Here, we isolated a YSL family gene SbYS1 from the sweet sorghum genotype with high Cd accumulation ability and the expression of SbYS1 in roots was induced by cadmium. GUS staining experiment exhibited that SbYS1 was expressed in the epidermis and parenchyma tissues of roots. Further subcellular localization analysis suggested that SbYS1 was localized in the endoplasmic reticulum and plasma membrane. Yeast transformed with SbYS1 exhibited a sensitive phenotype compared to the control when exposed to Cd-NA (chelates of cadmium and nicotianamine), indicating that SbYS1 may absorb cadmium in the form of Cd-NA. Arabidopsis overexpressing SbYS1 had a longer root length and accumulated less Cd in roots and shoots. SbWRKY72 bound to the promoter of SbYS1 and negatively regulated the expression of SbYS1. Transgenic Arabidopsis of SbWRKY72 showed higher sensitivity to cadmium and increased cadmium accumulation in roots. Our results provide references for improving the phytoremediation efficiency of sweet sorghum by genetic manipulation in the future.


Assuntos
Arabidopsis , Poluentes do Solo , Sorghum , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Biodegradação Ambiental , Grão Comestível/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
3.
Plant Cell Environ ; 47(7): 2640-2659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558078

RESUMO

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.


Assuntos
Parede Celular , Chenopodiaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Xilema , Tolerância ao Sal/genética , Xilema/fisiologia , Xilema/genética , Xilema/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamanho Celular , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Genes de Plantas , Diferenciação Celular/genética , Lignina/metabolismo
4.
Plant Cell Physiol ; 62(1): 66-79, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33141223

RESUMO

Salinity-induced lipid alterations have been reported in many plant species; however, how lipid biosynthesis and metabolism are regulated and how lipids work in plant salt tolerance are much less studied. Here, a constitutively much higher phosphatidylserine (PS) content in the plasma membrane (PM) was found in the euhalophyte Salicornia europaea than in Arabidopsis. A gene encoding PS synthase (PSS) was subsequently isolated from S. europaea, named SePSS, which was induced by salinity. Multiple alignments and phylogenetic analysis suggested that SePSS belongs to a base exchange-type PSS, which localises to the endoplasmic reticulum. Knockdown of SePSS in S. europaea suspension cells resulted in reduced PS content, decreased cell survival rate, and increased PM depolarization and K+ efflux under 400 or 800 mM NaCl. By contrast, the upregulation of SePSS leads to increased PS and phosphatidylethanolamine levels and enhanced salt tolerance in Arabidopsis, along with a lower accumulation of reactive oxygen species, less membrane injury, less PM depolarization and higher K+/Na+ in the transgenic lines than in wild-type (WT). These results suggest a positive correlation between PS levels and plant salt tolerance, and that SePSS participates in plant salt tolerance by regulating PS levels, hence PM potential and permeability, which help maintain ion homeostasis. Our work provides a potential strategy for improving plant growth under multiple stresses.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/fisiologia , Membrana Celular/fisiologia , Chenopodiaceae/enzimologia , Proteínas de Plantas/fisiologia , Arabidopsis , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Membrana Celular/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Chenopodiaceae/fisiologia , Retículo Endoplasmático/enzimologia , Técnicas de Silenciamento de Genes , Fosfatidilserinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Salino , Tolerância ao Sal , Alinhamento de Sequência
5.
Planta ; 254(1): 16, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34185181

RESUMO

MAIN CONCLUSION: Key miRNAs including sbi-miR169p/q, sbi-miR171g/j, sbi-miR172a/c/d, sbi-miR172e, sbi-miR319a/b, sbi-miR396a/b, miR408, sbi-miR5384, sbi-miR5565e and nov_23 were identified to function in the regulation of Cd accumulation and tolerance. As an energy plant, sweet sorghum shows great potential in the phytoremediation of Cd-contaminated soils. However, few studies have focused on the regulatory roles of miRNAs and their targets under Cd stress. In this study, comparative analysis of sRNAs, degradome and transcriptomics was conducted in high-Cd accumulation (H18) and low-Cd accumulation (L69) genotypes of sweet sorghum. A total of 38 conserved and 23 novel miRNAs with differential expressions were identified under Cd stress or between H18 and L69, and 114 target genes of 41 miRNAs were validated. Furthermore, 25 miRNA-mRNA pairs exhibited negatively correlated expression profiles and sbi-miR172e together with its target might participate in the distinct Cd tolerance between H18 and L69 as well as sbi-miR172a/c/d. Additionally, two groups of them: miR169p/q-nov_23 and miR408 were focused through the co-expression analysis, which might be involved in Cd uptake and tolerance by regulating their targets associated with transmembrane transportation, cytoskeleton activity, cell wall construction and ROS (reactive oxygen species) homeostasis. Further experiments exhibited that cell wall components of H18 and L69 were different when exposed to cadmium, which might be regulated by miR169p/q, miR171g/j, miR319a/b, miR396a/b, miR5384 and miR5565e through their targets. Through this study, we aim to reveal the potential miRNAs involved in sweet sorghum in response to Cd stress and provide references for developing high-Cd accumulation or high Cd-resistant germplasm of sweet sorghum that can be used in phytoremediation.


Assuntos
MicroRNAs , Sorghum , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Sorghum/genética , Sorghum/metabolismo , Transcriptoma/genética
6.
Plant Physiol Biochem ; 155: 637-649, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32858426

RESUMO

Phytosterols are a group of sterols exclusive to plants and fungi, but are indispensable to humans because of their medicinal and nutritional values. However, current raw materials used for phytosterols extraction add to the cost and waste in the process. For higher sterols production, major attention is drawn to plant materials abundant in phytosterols and genetic modification. To provide an insight into phytosterols metabolism, the research progress on key enzymes involved in phytosterols biosynthesis and conversions were summarized. CAS, SSR2, SMT, DWF1 and CYP710A, the enzymes participating in the biosynthetic pathway, and PSAT, ASAT and SGT, the enzymes involved in the conversion of free sterols to conjugated ones, were reviewed. Specifically, SMT and CYP710A were emphasized for their function on modulating the percentage composition of different kinds of phytosterols. The thresholds of sterol equilibrium and the resultant phytosterols accumulation, which vary in plant species and contribute to plasma membrane remodeling under stresses, were also discussed. By retrospective analysis of the previous researches, we proposed a feedback mechanism regulating sterol equilibrium underlying sterols metabolism. From a strategic perspective, we regard salt tolerant plant as an alternative to present raw materials, which will attain higher phytosterols production in combination with gene-modification.


Assuntos
Vias Biossintéticas , Fitosteróis/metabolismo , Plantas/enzimologia , Enzimas/metabolismo , Retroalimentação Fisiológica , Proteínas de Plantas/metabolismo , Estudos Retrospectivos
7.
Sheng Wu Gong Cheng Xue Bao ; 36(3): 416-425, 2020 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-32237536

RESUMO

Phytoremediation is one of the important methods for restoring heavy-metal contaminated soils. Using high-biomass economic plants to restore heavy-metal contaminated soils can have both ecological and economic benefits, with great application prospects. Based on the analysis of current situation and existing problems of phytoremediation, we propose the advantages of high-biomass economic plants in contaminated soil remediation, and summarize the recent advances and mechanisms involved in absorbing heavy metals in high-biomass economic plants. Furthermore, the possible methods for improving the remediation efficiency of high-biomass economic plants are also discussed, to provide insights for improving the economic benefits of phytoremediation and promoting its widespread application in the future.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Metais Pesados/metabolismo , Pesquisa/tendências , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA