Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091872

RESUMO

New high-quality human genome assemblies derived from lymphoblastoid cell lines (LCLs) provide reference genomes and pangenomes for genomics studies. However, the characteristics of LCLs pose technical challenges to profiling immunoglobulin (IG) genes. IG loci in LCLs contain a mixture of germline and somatically recombined haplotypes, making them difficult to genotype or assemble accurately. To address these challenges, we introduce IGLoo, a software tool that implements novel methods for analyzing sequence data and genome assemblies derived from LCLs. IGLoo characterizes somatic V(D)J recombination events in the sequence data and identifies the breakpoints and missing IG genes in the LCL-based assemblies. Furthermore, IGLoo implements a novel reassembly framework to improve germline assembly quality by integrating information about somatic events and population structural variantions in the IG loci. We applied IGLoo to study the assemblies from the Human Pangenome Reference Consortium, providing new insights into the mechanisms, gene usage, and patterns of V(D)J recombination, causes of assembly fragmentation in the IG heavy chain (IGH) locus, and improved representation of the IGH assemblies.

2.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745608

RESUMO

Many bioinformatics methods seek to reduce reference bias, but no methods exist to comprehensively measure it. Biastools analyzes and categorizes instances of reference bias. It works in various scenarios, i.e. (a) when the donor's variants are known and reads are simulated, (b) when donor variants are known and reads are real, and (c) when variants are unknown and reads are real. Using biastools, we observe that more inclusive graph genomes result in fewer biased sites. We find that end-to-end alignment reduces bias at indels relative to local aligners. Finally, we use biastools to characterize how T2T references improve large-scale bias.

3.
Genome Biol ; 25(1): 101, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641647

RESUMO

Many bioinformatics methods seek to reduce reference bias, but no methods exist to comprehensively measure it. Biastools analyzes and categorizes instances of reference bias. It works in various scenarios: when the donor's variants are known and reads are simulated; when donor variants are known and reads are real; and when variants are unknown and reads are real. Using biastools, we observe that more inclusive graph genomes result in fewer biased sites. We find that end-to-end alignment reduces bias at indels relative to local aligners. Finally, we use biastools to characterize how T2T references improve large-scale bias.


Assuntos
Genoma , Genômica , Genômica/métodos , Biologia Computacional , Mutação INDEL , Viés , Análise de Sequência de DNA/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Front Immunol ; 13: 922513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159868

RESUMO

Adaptive immune receptor repertoire (AIRR) is encoded by T cell receptor (TR) and immunoglobulin (IG) genes. Profiling these germline genes encoding AIRR (abbreviated as gAIRR) is important in understanding adaptive immune responses but is challenging due to the high genetic complexity. Our gAIRR Suite comprises three modules. gAIRR-seq, a probe capture-based targeted sequencing pipeline, profiles gAIRR from individual DNA samples. gAIRR-call and gAIRR-annotate call alleles from gAIRR-seq reads and annotate whole-genome assemblies, respectively. We gAIRR-seqed TRV and TRJ of seven Genome in a Bottle (GIAB) DNA samples with 100% accuracy and discovered novel alleles. We also gAIRR-seqed and gAIRR-called the TR and IG genes of a subject from both the peripheral blood mononuclear cells (PBMC) and oral mucosal cells. The calling results from these two cell types have a high concordance (99% for all known gAIRR alleles). We gAIRR-annotated 36 genomes to unearth 325 novel TRV alleles and 29 novel TRJ alleles. We could further profile the flanking sequences, including the recombination signal sequence (RSS). We validated two structural variants for HG002 and uncovered substantial differences of gAIRR genes in references GRCh37 and GRCh38. gAIRR Suite serves as a resource to sequence, analyze, and validate germline TR and IG genes to study various immune-related phenotypes.


Assuntos
Genes de Imunoglobulinas , Leucócitos Mononucleares , Imunoglobulinas/genética , Sinais Direcionadores de Proteínas/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA