Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Jpn J Clin Oncol ; 51(1): 120-129, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33106877

RESUMO

OBJECTIVE: Colorectal cancer is one of the most prevalent types of cancer worldwide. Right-sided and left-sided colorectal cancer (RCC and LCC) patients respond differently to treatment. We aimed to identify the different mutational profile between RCC and LCC and provided evidence for future precision therapy. METHODS: A total of 630 Chinese colorectal cancer patients, including 467 (74.1%) LCC and 163 (25.9%) RCC, were enrolled in this cohort. Both formalin-fixed paraffin-embedded tumor tissues and matching blood samples were collected and deep sequenced targeting 450 cancer genes for genomic alteration analysis. Tumor mutational burden was measured by an algorithm developed in-house. Correlation analysis was performed by Fisher's exact test. RESULTS: The most common mutated genes were TP53 (77.0%), APC (71.7%), KRAS (50.0%), SMAD4 (19.8%), PIK3CA (18.3%), FBXW7 (17.5%), TCF7L2 (12.5%), SOX9 (11.3%), LRP1B (10.8%), ARID1A (10.3%) and FAT4 (10.3%). The mutation frequencies of TP53 and APC in LCC were significantly higher than that of RCC, while the mutation frequency of PIK3CA was lower than that of RCC. Six gene fusions were specifically detected in RCC patients. Colorectal cancer sites were associated with gender (P = 4.15 × 10-5) and tumor differentiation (P = 0.059). In LCC, the gender-associated genes were FAT4, EP300, FAT1, LRP1, ARID1B, AR, FYN and TAF1, while in RCC, they were ARID1A, SMARCA4, LRP1 and GRIN2A. The mutations of 18 genes were associated with tumor differentiation (8 for LCC and 10 for RCC). High tumor mutational burden was more common in RCC. Our results implied more potential targeted drug therapy opportunities for RCC. CONCLUSION: We describe the different molecular characteristics of LCC and RCC. Our result supported a better prognosis of RCC than LCC in Chinese colorectal cancer patients.


Assuntos
Neoplasias Colorretais/genética , Taxa de Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Hepatology ; 69(6): 2489-2501, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672601

RESUMO

Aldo-keto reductase family 1 member B10 (AKR1B10) is a secretory protein overexpressed in hepatocellular carcinoma (HCC). We aimed to evaluate AKR1B10 as a serum marker for detection of HCC. Herein, we conducted a cohort study that consecutively enrolled 1,244 participants from three independent hospitals, including HCC, healthy controls (HCs), benign liver tumors (BLTs), chronic hepatitis B (CHB), and liver cirrhosis (LC). Serum AKR1B10 was tested by time-resolved fluorescent assays. Data were plotted for receiver operating characteristic (ROC) curve analyses. Alpha-fetoprotein (AFP) was analyzed for comparison. An exploratory discovery cohort demonstrated that serum AKR1B10 increased in patients with HCC (1,567.3 ± 292.6 pg/mL; n = 69) compared with HCs (85.7 ± 10.9 pg/mL; n = 66; P < 0.0001). A training cohort of 519 participants yielded an optimal diagnostic cutoff of serum AKR1B10 at 267.9 pg/mL. When ROC curve was plotted for HCC versus all controls (HC + BLT + CHB + LC), serum AKR1B10 had diagnostic parameters of the area under the curve (AUC) 0.896, sensitivity 72.7%, and specificity 95.7%, which were better than AFP with AUC 0.816, sensitivity 65.1%, and specificity 88.9%. Impressively, AKR1B10 showed promising diagnostic potential in early-stage HCC and AFP-negative HCC. Combination of AKR1B10 with AFP increased diagnostic accuracy for HCC compared with AKR1B10 or AFP alone. A validation cohort of 522 participants confirmed these findings. An independent cohort of 68 patients with HCC who were followed up showed that serum AKR1B10 dramatically decreased 1 day after operation and was nearly back to normal 3 days after operation. Conclusion: AKR1B10 is a potent serum marker for detection of HCC and early-stage HCC, with better diagnostic performance than AFP.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Adulto , Biomarcadores Tumorais , Biópsia por Agulha , Carcinoma Hepatocelular/diagnóstico , Estudos de Casos e Controles , China , Feminino , Hospitais Universitários , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Curva ROC , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Biometals ; 30(6): 903-915, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993927

RESUMO

Rhodium (II) complex with 2-benzoylpyridine (Rh(L)2Cl2) is a new, synthetic, active metal-complex, which is produced by the reaction of 2-benzoylpyridine (L) with rhodium chloride hydrate (RhCl3·nH2O). The crystal structure was determined by X-ray diffraction which is mono-nuclear. In order to explore the biological properties of the novel complex, a series of studies were performed. The results showed that Rh(L)2Cl2 had the anti-tumor activity in HepG2 and other cell lines and has been shown to induce G1 cell cycle arrest and apoptosis in HepG2 cells. The anti-cancer effect of Rh(L)2Cl2 is regulated by increased expression of caspase-3 and PARP via the mitochondrial and the death receptor pathways. Bcl-2 family proteins might play an important role in the Rh(L)2Cl2-induced changes in these two pathways. Further studies indicated that Rh(L)2Cl2 increased the level of reactive oxygen species (ROS), but that Rh(L)2Cl2-induced apoptosis was ROS-independent. In conclusion, Rh(L)2Cl2 is a potential new anti-tumor drug, which induces HepG2 cell death via the mitochondrial and death receptor pathways and has no obvious toxicity to normal liver cell.


Assuntos
Antineoplásicos/farmacologia , Compostos Organometálicos/farmacologia , Ródio/química , Ródio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Cristalografia por Raios X , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Organometálicos/química , Proteínas Proto-Oncogênicas c-bcl-2 , Piridinas/química , Espécies Reativas de Oxigênio/metabolismo
4.
Front Pharmacol ; 15: 1336122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405667

RESUMO

Background: Epilepsy is a prevalent neurological disease where neuroinflammation plays a significant role in epileptogenesis. Recent studies have suggested that Astragalus polysaccharides (APS) have anti-inflammatory properties, which make them a potential candidate for neuroprotection against central nervous system disease. Nevertheless, the extent of their effectiveness in treating epilepsy remains enigmatic. Therefore, our study aims to investigate the potential of APS to mitigate epileptogenesis and its comorbidities by exploring its underlying mechanism. Methods: Initially, we employed pentylenetetrazol-induced seizure mice to validate APS' effectiveness. Subsequently, we employed network pharmacology analysis to probe the possible targets and signaling pathways of APS in treating epilepsy. Ultimately, we verified the key targets and signaling pathways experimentally, predicting their mechanisms of action. Results: APS have been observed to disturb the acquisition process of kindling, leading to reduced seizure scores and a lower incidence of complete kindling. Moreover, APS has been found to improve cognitive impairments and prevent hippocampal neuronal damage during the pentylenetetrazole (PTZ)-kindling process. Subsequent network pharmacology analysis revealed that APS potentially exerted their anti-epileptic effects by targeting cytokine and toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) signaling pathways. Finally, experimental findings showed that APS efficiently inhibited the activation of astrocytes and reduced the release of pro-inflammatory mediators, such as interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, APS impeded the activation of the TLR4/NF-κB signaling cascade in a PTZ-induced kindling mouse model. Conclusion: The outcomes of our study suggest that APS exerts an impact on epileptogenesis and mitigates cognitive impairment by impeding neuroinflammatory processes. The mechanism underlying these observations may be attributed to the modulation of the TLR4/NF-κB signaling pathway, resulting in a reduction of the release of inflammatory mediators. These findings partially agree with the predictions derived from network pharmacology analyses. As such, APS represents a potentially innovative and encouraging adjunct therapeutic option for epileptogenesis and cognitive deficit.

5.
J Cancer ; 14(12): 2386-2398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576398

RESUMO

Objective: Through data analysis, we observed that AC096751.1 is markedly imbalance between colon adenocarcinoma (COAD) cancer and paracancerous tissues. However, the prognostic value and potential molecular mechanism of AC096751.1 in COAD are still unclear. Methods: Whole genome RNA-sequencing datasets of The Cancer Genome Atlas (TCGA) COAD cohort were collected into current study, comprehensive survival analysis and bioinformatics function enrichment analysis approaches were apply to explore the clinical outcome and molecular mechanisms of AC096751.1 in COAD. Results: In current study, we found that AC096751.1 is markedly down-regulated in COAD cancer tissues (log2 fold change =2.303, P<0.0001, false discovery rate <0.0001), and can be serve as a biomarker to distinguish COAD cancer and paracancerous tissues [area under curve=0.9518, 95% confidence interval (CI)=0.9261-0.9776]. Survival analysis suggests that low expression of AC096751.1 is connected with poor clinical outcome of COAD, and can serve as a novel prognostic indicator (log-rank P=0.016, adjusted P=0.005, hazard ratio=0.548, 95% CI=0.360-0.836). Bioinformatics function enrichment analysis suggests that the molecular mechanism of AC096751.1 in COAD may include participation in cell adhesion, cell proliferation, mitogen-activated protein kinase kinase (MAPKK), MAPK, janus-activated kinase-singal transducers and activators of transcriprion cascade, Erk1 and Erk 2 cascade, and nuclear factor-kappa B pathway. Tumor microenvironment and immune infiltration analysis indicates that COAD patients with different AC096751.1 expression have significant variation in tumor immune background. Conclusion: The present study found that AC096751.1 is significantly differentially expressed in COAD and can be serve as a novel prognostic biomarker.

6.
Int J Biol Markers ; 37(2): 149-157, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35505597

RESUMO

BACKGROUND: Lysine methyltransferase 2 (KMT2) family proteins methylate lysine 4 on histone H3 (H3K4) to promote genome accessibility and transcription. Dysregulation or mutation of KMT2 family have been observed frequently in various types of human cancers. Colorectal cancer is the third most common cancer worldwide. However, few studies have evaluated the role of KMT2 family mutations in colorectal cancer. The present study aimed to explore the impact of KMT2 family mutations on clinicopathological, molecular characteristics and prognosis in colorectal cancer. METHODS: A total of 316 colorectal cancer patients were enrolled; tumor tissue and matched peripheral blood samples were collected and subjected to targeted sequencing with a panel of 1021 cancer-related genes. The association of clinical pathological features and molecular characteristics in patients were then analyzed. The cBioPortal dataset was used for investigating the KMT2 family mutations data and their correlation with clinical outcomes. RESULTS: The overall mutation frequencies of KMT2A-D were 9.5%, 0.5%, 13%, and 13%, respectively, which were more often present at right-sided primary and earlier stage tumors. KMT2A-D mutations are associated with enhanced genomic instability, including a higher level of microsatellite instability (MSI-H) and tumor mutational burden (TMB-H). In addition, our results highlight the co-occurring gene mutations within the Wnt signaling, ERBB2/4, TGF-ß superfamily pathway, and PI-3-kinase pathway in KMT2-mutant colorectal cancer. KMT2 family mutations were predictive biomarker for better overall survival in metastatic colorectal cancer. CONCLUSIONS: Collectively, we identified that KMT2 family mutations were correlated with higher-TMB and higher-MSI, thus resulting in a better outcome for colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Lisina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Lisina/genética , Instabilidade de Microssatélites , Mutação , Prognóstico
7.
Front Cell Dev Biol ; 9: 632805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644071

RESUMO

Aldo-keto reductase 1B10 (AKR1B10) is downregulated in human ulcerative colitis (UC) and colorectal cancer, being a potential pathogenic factor of these diseases. Aldo-keto reductase 1B8 (AKR1B8) is the ortholog in mice of human AKR1B10. Targeted AKR1B8 deficiency disrupts homeostasis of epithelial self-renewal and leads to susceptibility to colitis and carcinogenesis. In this study, we found that in AKR1B8 deficient mice, Muc2 expression in colon was diminished, and permeability of colonic epithelium increased. Within 24 h, orally administered FITC-dextran penetrated into mesenteric lymph nodes (MLN) and liver in AKR1B8 deficient mice, but not in wild type controls. In the colon of AKR1B8 deficient mice, neutrophils and mast cells were markedly infiltrated, γδT cells were numerically and functionally impaired, and dendritic cell development was altered. Furthermore, Th1, Th2, and Th17 cells decreased, but Treg and CD8T cells increased in the colon and MLN of AKR1B8 deficient mice. In colonic epithelial cells of AKR1B8 deficient mice, p-AKT (T308 and S473), p-ERK1/2, p-IKBα, p-p65 (S536), and IKKα expression decreased, accompanied with downregulation of IL18 and CCL20 and upregulation of IL1ß and CCL8. These data suggest AKR1B8 deficiency leads to abnormalities of intestinal epithelial barrier and immunity in colon.

8.
FEBS J ; 285(20): 3835-3848, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30106227

RESUMO

Neutral sphingomyelinase 1 (NSMase1) mediates caspase-3 activation and apoptosis. However, the role of NSMase1, especially exosome-borne NSMase1 in hepatocellular carcinoma (HCC), remains unclear. We report that NSMase1, which converts sphingomyelin (SM) to ceramide, was significantly downregulated in HCC tissues. Low NSMase1 expression predicted poor long-term survival of HCC patients. NSMase1 downregulation in HCC resulted in increased SM and reduced ceramide (Cer) that led to an increased SM/Cer ratio. Interestingly, NSMase1 and NSMase activity were also decreased in exosomes isolated from HCC tissues and cell lines. Furthermore, NSMase activity increased in exosomes isolated from the culture medium of L02 cells transfected with pEGFP-C3-NSMase1 (NSMase1-Exo). NSMase1-Exo suppressed HCC cell growth and induced apoptosis via reduction of the SM/Cer ratio. Thus, NSMase1 in exosomes inhibits HCC growth by decreasing the SM/Cer ratio.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Ceramidas/metabolismo , Exossomos/enzimologia , Neoplasias Hepáticas/patologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Esfingomielina Fosfodiesterase/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
9.
Int J Oncol ; 50(5): 1671-1682, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28339031

RESUMO

Long non-coding RNAs (lncRNAs) function in the development and progression of cancer, but only a small portion of lncRNAs have been characterized to date. A novel lncRNA transcript, 2.53 kb in length, was identified by transcriptome sequencing analysis, and was named p53-inducible cancer-associated RNA transcript 1 (PICART1). PICART1 was found to be upregulated by p53 through a p53-binding site at -1808 to -1783 bp. In breast and colorectal cancer cells and tissues, PICART1 expression was found to be decreased. Ectopic expression of PICART1 suppressed the growth, proliferation, migration, and invasion of MCF7, MDA-MB-231 and HCT116 cells whereas silencing of PICART1 stimulated cell growth and migration. In these cells, the expression of PICART1 suppressed levels of p-AKT (Thr308 and Ser473) and p-GSK3ß (Ser9), and accordingly, ß-catenin, cyclin D1 and c-Myc expression were decreased, while p21Waf/cip1 expression was increased. Together these data suggest that PICART1 is a novel p53-inducible tumor-suppressor lncRNA, functioning through the AKT/GSK3ß/ß-catenin signaling cascade.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética , Neoplasias da Mama/patologia , Neoplasias Colorretais/patologia , Ciclina D1/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Células HCT116 , Humanos , Células MCF-7 , Proteína Oncogênica v-akt/genética , Proteína Supressora de Tumor p53/biossíntese , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA