RESUMO
OBJECTIVES: Autophagy has recently been shown to regulate osteoclast activity and osteoclast differentiation. Here, we aim to investigate the impact of autophagy inhibition as a potential therapeutic approach for the treatment of osteoporosis in preclinical models. METHODS: Systemic bone loss was induced in mice by glucocorticoids and by ovariectomy (OVX). Autophagy was targeted by conditional inactivation of autophagy-related gene 7 (Atg7) and by treatment with chloroquine (CQ). Bone density was evaluated by microCT. The role of autophagy on osteoclastogenesis was analysed by osteoclastogenesis and bone resorption assays. The quantification of receptor activator of nuclear factor κ B ligand and osteoprotegerin proteins in cocultures was performed using ELISA whereas that of osteoclast and osteoblast differentiation markers was by qPCR. RESULTS: Selective deletion of Atg7 in monocytes from Atg7(fl/fl)_x_LysM-Cre mice mitigated glucocorticoid-induced and OVX-induced osteoclast differentiation and bone loss compared with Atg7(fl/fl) littermates. Pharmacological inhibition of autophagy by treatment with CQ suppressed glucocorticoid-induced osteoclastogenesis and protected mice from bone loss. Similarly, inactivation of autophagy shielded mice from OVX-induced bone loss. Inhibition of autophagy led to decreased osteoclast differentiation with lower expression of osteoclast markers such as NFATc1, tartrate-resistant acid phosphatase, OSCAR and cathepsin K and attenuated bone resorption in vitro. In contrast, osteoblast differentiation was not affected by inhibition of autophagy. CONCLUSIONS: Pharmacological or genetic inactivation of autophagy ameliorated glucocorticoid-induced and OVX-induced bone loss by inhibiting osteoclastogenesis. These findings may have direct translational implications for the treatment of osteoporosis, since inhibitors of autophagy such as CQ are already in clinical use.
Assuntos
Autofagia/efeitos dos fármacos , Osteoporose/prevenção & controle , Animais , Proteína 7 Relacionada à Autofagia/genética , Células Cultivadas , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Modelos Animais de Doenças , Feminino , Deleção de Genes , Glucocorticoides , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Monócitos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Osteogênese/efeitos dos fármacos , Osteoporose/induzido quimicamente , Osteoporose/etiologia , Osteoporose/patologia , OvariectomiaRESUMO
OBJECTIVES: Notch ligands and receptors have recently been shown to be differentially expressed in osteoarthritis (OA). We aim to further elucidate the functional role of Notch signalling in OA using Notch1 antisense transgenic (Notch1 AS) mice. METHODS: Notch and hedgehog signalling were analysed by real-time PCR and immunohistochemistry. Notch-1 AS mice were employed as a model of impaired Notch signalling in vivo. Experimental OA was induced by destabilisation of the medial meniscus (DMM). The extent of cartilage destruction and osteophyte formation was analysed by safranin-O staining with subsequent assessment of the Osteoarthritis Research Society International (OARSI) and Mankin scores and µCT scanning. Collagen X staining was used as a marker of chondrocyte hypertrophy. The role of hairy/enhancer of split 1 (Hes-1) was investigated with knockdown and overexpression experiments. RESULTS: Notch signalling was activated in human and murine OA with increased expression of Jagged1, Notch-1, accumulation of the Notch intracellular domain 1 and increased transcription of Hes-1. Notch1 AS mice showed exacerbated OA with increases in OARSI scores, osteophyte formation, increased subchondral bone plate density, collagen X and osteocalcin expression and elevated levels of Epas1 and ADAM-TS5 mRNA. Inhibition of the Notch pathway induced activation of hedgehog signalling with induction of Gli-1 and Gli-2 and increased transcription of hedgehog target genes. The regulatory effects of Notch signalling on Gli-expression were mimicked by Hes-1. CONCLUSIONS: Inhibition of Notch signalling activates hedgehog signalling, enhances chondrocyte hypertrophy and exacerbates experimental OA including osteophyte formation. These data suggest that the activation of the Notch pathway may limit aberrant hedgehog signalling in OA.
Assuntos
Artrite Experimental/metabolismo , Proteínas de Transporte/metabolismo , Condrócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Osteoartrite/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Cartilagem Articular/metabolismo , Camundongos , Camundongos Transgênicos , Osteófito/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Transdução de SinaisRESUMO
OBJECTIVES: Casein kinase II (CK2) is a constitutively active serine/threonine protein kinase that plays a key role in cellular transformation and tumorigenesis. The purpose of the study was to characterise whether CK2 contributes to the pathologic activation of fibroblasts in patients with SSc and to evaluate the antifibrotic potential of CK2 inhibition. METHODS: Activation of CK2, JAK2 and STAT3 in human skin and in experimental fibrosis was analysed by immunohistochemistry. CK2 signalling was inhibited by the selective CK2 inhibitor 4, 5, 6, 7-Tetrabromobenzotriazole (TBB). The mouse models of bleomycin-induced and TGFß receptor I (TBR)-induced dermal fibrosis were used to evaluate the antifibrotic potential of specific CK2 inhibition in vivo. RESULT: Increased expression of CK2 was detected in skin fibroblasts of SSc patients. Inhibition of CK2 by TBB abrogated the TGFß-induced activation of JAK2/STAT3 signalling and prevented the stimulatory effects of TGFß on collagen release and myofibroblasts differentiation in cultured fibroblasts. Inhibition of CK2 prevented bleomycin-induced and TBR-induced skin fibrosis with decreased dermal thickening, lower myofibroblast counts and reduced accumulation of collagen. Treatment with TBB also induced regression of pre-established fibrosis. The antifibrotic effects of TBB were accompanied by reduced activation of JAK2/STAT3 signalling in vivo. CONCLUSIONS: We provide evidence that CK2 is activated in SSc and contributes to fibroblast activation by regulating JAK2/STAT3 signalling. Inhibition of CK2 reduced the pro-fibrotic effects of TGFß and inhibited experimental fibrosis. Targeting of CK2 may thus be a novel therapeutic approach for SSc and other fibrotic diseases.
Assuntos
Caseína Quinase II/metabolismo , Fibroblastos/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Animais , Caseína Quinase II/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Fibrose , Humanos , Janus Quinase 2/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Fator de Transcrição STAT3/efeitos dos fármacos , Escleroderma Sistêmico/patologia , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Fator de Crescimento Transformador beta/efeitos dos fármacos , Triazóis/farmacologia , Adulto JovemRESUMO
BACKGROUND: Osteoarthritis is the most common form of arthritis and a major socioeconomic burden. Our study is the first to explore the association between serum microRNA levels and the development of severe osteoarthritis of the knee and hip joint in the general population. METHODS: We followed 816 Caucasian individuals from 1995 to 2010 and assessed joint arthroplasty as a definitive outcome of severe osteoarthritis of the knee and hip. After a microarray screen, we validated 12 microRNAs by real-time PCR in the entire cohort at baseline. RESULTS: In Cox regression analysis, three microRNAs were associated with severe knee and hip osteoarthritis. let-7e was a negative predictor for total joint arthroplasty with an adjusted HR of 0.75 (95% CI 0.58 to 0.96; p=0.021) when normalised to U6, and 0.76 (95% CI 0.6 to 0.97; p=0.026) after normalisation to the Ct average. miRNA-454 was inversely correlated with severe knee or hip osteoarthritis with an adjusted HR of 0.77 (95% CI 0.61 to 0.97; p=0.028) when normalised to U6. This correlation was lost when data were normalised to Ct average (p=0.118). Finally, miRNA-885-5p showed a trend towards a positive relationship with arthroplasty when normalised to U6 (HR 1.24; 95% CI 0.95 to 1.62; p=0.107) or to Ct average (HR 1.30; 95% CI 0.99 to 1.70; p=0.056). CONCLUSIONS: Our study is the first to identify differentially expressed circulating microRNAs in osteoarthritis patients necessitating arthroplasty in a large, population-based cohort. Among these microRNAs, let-7e emerged as potential predictor for severe knee or hip osteoarthritis.
Assuntos
MicroRNAs/sangue , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Idoso , Artroplastia de Quadril , Artroplastia do Joelho , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Osteoartrite do Quadril/sangue , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/sangue , Osteoartrite do Joelho/cirurgia , Modelos de Riscos Proporcionais , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de DoençaRESUMO
Expression of T antigen (Galbeta1, 3GalNAc) is associated with enhanced metastatic potential and poor prognosis in colorectal cancer. Cosmc is a molecular chaperone required for the formation of an active T-synthase, which catalyzes the synthesis of T antigen. However, the expression and role of Cosmc in colorectal cancer are still unclear. Here, real-time PCR showed that overexpression of Cosmc mRNA in colorectal tumors compared with paired non-tumorous tissues was associated with increased American Joint Committee on Cancer (AJCC) tumor stage. Forced expression of Cosmc in HCT116 cells significantly increased T antigen expression and enhanced cell growth, migration, and invasion, which was associated with increased phosphorylation of focal adhesion kinase (FAK), ERK, and Akt. These Cosmc-enhanced malignant phenotypes were significantly suppressed by specific inhibitor of MEK or PI3K. We also found that Cosmc overexpression increased tumor growth and decreased survival of tumor-bearing SCID mice. Conversely, knockdown of Cosmc with siRNA in SW480 cells decreased malignant behaviors and the signaling pathways, which were substantially reversed by constitutively active Akt or MEK. Taken together, these results suggest that Cosmc promotes malignant phenotypes of colon cancer cells mainly via activation of MEK/ERK and PI3K/Akt signaling pathways, and that Cosmc may serve as a potential target for colorectal cancer treatment.
Assuntos
Neoplasias Colorretais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Chaperonas Moleculares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Citometria de Fluxo , Quinase 1 de Adesão Focal/metabolismo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais CultivadasRESUMO
OBJECTIVES: Activated Wnt signalling with decreased expression of endogenous inhibitors has recently been characterised as a central pathomechanism in systemic sclerosis (SSc). Aberrant epigenetic modifications also contribute to the persistent activation of SSc fibroblasts. We investigated whether increased Wnt signalling and epigenetic changes in SSc are causally linked via promoter hypermethylation-induced silencing of Wnt antagonists. METHODS: The methylation status of endogenous Wnt antagonists in leucocytes and fibroblasts was evaluated by methylation-specific PCR. 5-aza-2'-deoxycytidine was used to inhibit DNA methyltransferases (Dnmts) in cultured fibroblasts and in the mouse model of bleomycin-induced skin fibrosis. Activation of Wnt signalling was assessed by analysing Axin2 mRNA levels and by staining for ß-catenin. RESULTS: The promoters of DKK1 and SFRP1 were hypermethylated in fibroblasts and peripheral blood mononuclear cells of patients with SSc. Promoter hypermethylation resulted in impaired transcription and decreased expression of DKK1 and SFRP1 in SSc. Treatment of SSc fibroblasts or bleomycin-challenged mice with 5-aza prevented promoter methylation-induced silencing and increased the expression of both genes to normal levels. Reactivation of DKK1 and SFRP1 transcription by 5-aza inhibited canonical Wnt signalling in vitro and in vivo and effectively ameliorated experimental fibrosis. CONCLUSIONS: We demonstrate that hypermethylation of the promoters of DKK1 and SFRP1 contributes to aberrant Wnt signalling in SSc and that Dnmt inhibition effectively reduces Wnt signalling. These data provide a novel link between epigenetic alterations and increased Wnt signalling in SSc and also have translational implications because Dnmt inhibitors are already approved for clinical use.
Assuntos
Metilação de DNA/genética , Regulação para Baixo/genética , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucócitos Mononucleares/metabolismo , Proteínas de Membrana/genética , Escleroderma Sistêmico/genética , Via de Sinalização Wnt/genética , Adulto , Idoso , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Estudos de Casos e Controles , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA/efeitos dos fármacos , Decitabina , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Via de Sinalização Wnt/efeitos dos fármacos , Adulto JovemRESUMO
OBJECTIVES: Canonical as well as non-canonical Wnt signalling pathways have emerged as core pathways of fibrosis. Their profibrotic effects are mediated via distinct intracellular cascades independently of each other. Thus, inhibition of both pathways may have additive antifibrotic effects. Here, we knocked down evenness interrupted (EVI) to simultaneously target for the first time canonical and non-canonical Wnt signalling in experimental fibrosis. METHODS: The antifibrotic effects of siRNA-mediated knockdown of EVI were evaluated in the mouse models of bleomycin-induced skin fibrosis and in fibrosis induced by adenoviral overexpression of a constitutively active TGF-ß receptor I (AdTBRI). RESULTS: Knockdown of EVI decreased the release of canonical and non-canonical Wnt ligands by fibroblasts and reduced the activation of canonical and non-canonical Wnt cascades in experimental fibrosis with decreased accumulation of ß-catenin and phosphorylated JNK and cJun. Inactivation of EVI exerted potent antifibrotic effects and reduced dermal thickening, myofibroblast differentiation and accumulation of collagen in the mouse models of bleomycin-induced and AdTBR-induced fibrosis. CONCLUSIONS: Inhibition of Wnt secretion by knockdown of EVI inhibits canonical and non-canonical Wnt signalling and effectively reduces experimental fibrosis in different preclinical models. Inhibition of Wnt secretion may thus be an interesting approach for the treatment of fibrosis.
Assuntos
Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Receptores Acoplados a Proteínas G/genética , Escleroderma Sistêmico/prevenção & controle , Pele/patologia , Via de Sinalização Wnt/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , MAP Quinase Quinase 4/metabolismo , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/fisiologia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismoRESUMO
OBJECTIVES: The morphogen pathways Hedgehog, Wnt and Notch are attractive targets for antifibrotic therapies in systemic sclerosis. Interference with stem cell regeneration, however, may complicate the use of morphogen pathway inhibitors. We therefore tested the hypothesis that combination therapies with low doses of Hedgehog, Wnt and Notch inhibitors maybe safe and effective for the treatment of fibrosis. METHODS: Skin fibrosis was induced by bleomycin and by overexpression of a constitutively active TGF-ß receptor type I. Adverse events were assessed by clinical monitoring, pathological evaluation and quantification of Lgr5-positive intestinal stem cells. RESULTS: Inhibition of Hedgehog, Wnt and Notch signalling dose-dependently ameliorated bleomycin-induced and active TGF-ß receptor type I-induced fibrosis. Combination therapies with low doses of Hedgehog/Wnt inhibitors or Hedgehog/Notch inhibitors demonstrated additive antifibrotic effects in preventive as well as in therapeutic regimes. Combination therapies were well tolerated. In contrast with high dose monotherapies, combination therapies did not reduce the number of Lgr5 positive intestinal stem cells. CONCLUSIONS: Combined inhibition of morphogen pathways exerts additive antifibrotic effects. Combination therapies are well tolerated and, in contrast to high dose monotherapies, may not impair stem cell renewal. Combined targeting of morphogen pathways may thus help to overcome dose-limiting toxicity of Hedgehog, Wnt and Notch signalling.
Assuntos
Fibrose/tratamento farmacológico , Proteínas Hedgehog/antagonistas & inibidores , Receptores Notch/antagonistas & inibidores , Escleroderma Sistêmico/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Bleomicina , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Pirimidinonas/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Alcaloides de Veratrum/farmacologia , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Cells in the tumor microenvironment (TME) communicate via membrane-bound and secreted proteins, which are mostly glycosylated. Altered glycomes of malignant tumors influence behaviors of stromal cells. In this study, we showed that the loss of core-1 ß1,3-galactosyltransferase (C1GALT1)-mediated O-glycosylation suppressed tumor growth in syngeneic head and neck cancer mouse models. O-glycan truncation in tumor cells promoted the M1 polarization of macrophages, enhanced T-cell-mediated cytotoxicity, and reduced interleukin-6 (IL-6) levels in the secretome. Proteasomal degradation of IL-6 was controlled by the O-glycan at threonine 166. Both IL-6/IL-6R blockade and O-glycan truncation in tumor cells induced similar pro-inflammatory phenotypes in macrophages and cytotoxic T lymphocytes (CTLs). The combination of the O-glycosylation inhibitor itraconazole and anti-programmed cell death protein 1 (anti-PD-1) antibody effectively suppressed tumor growth in vivo. Collectively, our findings demonstrate that O-glycosylation in tumor cells governs their crosstalk with macrophages and CTLs. Thus, targeting O-glycosylation successfully reshapes the TME and consequently enhances the efficacy of anti-PD-1 therapy.
Assuntos
Neoplasias de Cabeça e Pescoço , Interleucina-6 , Animais , Camundongos , Glicosilação , Interleucina-6/metabolismo , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoterapia , Polissacarídeos/metabolismo , Microambiente TumoralRESUMO
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
RESUMO
Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.
Assuntos
Transdiferenciação Celular , Fibroblastos , Miofibroblastos , Fator de Crescimento Transformador beta , Proteína Wnt-5a , Fibrose , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator de Crescimento Transformador beta/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/farmacologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , MAP Quinase Quinase 4/metabolismo , Quinases Associadas a rho/metabolismo , Ligantes , Pele/metabolismo , Pele/patologia , Humanos , Animais , Camundongos , Células Cultivadas , Regulação para CimaRESUMO
Immunotherapy has revolutionized cancer treatment, but the lack of a reliable predictive biomarker for treatment response remains a challenge. Alpha-1,6-Mannosylglycoprotein 6-ß-N-Acetylglucosaminyltransferase 5 (MGAT5) is a key regulator of complex N-glycan synthesis, and its dysregulation is associated with cancer progression. The lectin Phaseolus vulgaris leukoagglutinin (PHA-L) specifically binds to mature MGAT5 products. Previous studies have indicated elevated PHA-L staining in head and neck squamous cell carcinoma (HNSCC), which implies increased activity of MGAT5. However, the specific role of MGAT5 in HNSCC remains unclear. In this study, we found significantly higher PHA-L staining and MGAT5 expression in HNSCC tumors compared to adjacent non-tumor tissues. Using a mass spectrometry (MS)-based glycoproteomic approach, we identified 163 potential protein substrates of MGAT5. Functional analysis revealed that protein substrates of MGAT5 regulated pathways related to T cell proliferation and activation. We further discovered that PD-L1 was among the protein substrates of MGAT5, and the expression of MGAT5 protected tumor cells from cytotoxic T lymphocyte (CTL) killing. Treatment of nivolumab alleviated the protective effects of MGAT5 on CTL activity. Consistently, patients with MGAT5-positive tumors showed improved responses to immunotherapy compared to those with MGAT5-negative tumors. Using purified PD-L1 from HNSCC cells and a glycoproteomic approach, we further deciphered that the N35 and N200 sites carry the majority of complex N-glycans on PD-L1. Our findings highlight the critical role of MGAT5-mediated branched N-glycans on PD-L1 in modulating the interaction with the immune checkpoint receptor PD-1. Consequently, we propose that MGAT5 could serve as a biomarker to predict patients' responses to anti-PD-1 therapy. Furthermore, targeting the branched N-glycans at N35 and N200 of PD-L1 may lead to the development of novel diagnostic and therapeutic approaches.
RESUMO
BACKGROUND AND OBJECTIVES: Fibrosis is a major socioeconomic burden, but effective antifibrotic therapies are not available in the clinical routine. There is growing evidence for a central role of Wnt signalling in fibrotic diseases such as systemic sclerosis, and we therefore evaluated the translational potential of pharmacological Wnt inhibition in experimental dermal fibrosis. METHODS: We examined the antifibrotic effects of PKF118-310 and ICG-001, two novel inhibitors of downstream canonical Wnt signalling, in the models of prevention and treatment of bleomycin-induced dermal fibrosis as well as in experimental dermal fibrosis induced by adenoviral overexpression of a constitutively active transforming growth factor (TGF)-ß receptor I. RESULTS: PKF118-310 and ICG-001 were well tolerated throughout all experiments. Both therapeutic approaches showed antifibrotic effects in preventing and reversing bleomycin-induced dermal fibrosis as measured by skin thickness, hydroxyproline content and myofibroblast counts. PKF118-310 and ICG-001 were effective in inhibiting TGF-ß receptor I-driven fibrosis as assessed by the same outcome measures. CONCLUSIONS: Blockade of canonical Wnt signalling by PKF118-310 and ICG-001 showed antifibrotic effects in different models of skin fibrosis. Both therapies were well tolerated. Although further experimental evidence for efficacy and tolerability is necessary, inhibition of canonical Wnt signalling is a promising treatment approach for fibrosis.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Pirimidinonas/uso terapêutico , Dermatopatias/prevenção & controle , Pele/patologia , Triazinas/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos DBA , Pirimidinonas/farmacologia , Escleroderma Sistêmico , Transdução de Sinais/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia , Resultado do Tratamento , Triazinas/farmacologiaRESUMO
OBJECTIVES: Canonical Wnt signalling has recently emerged as a key mediator of fibroblast activation and tissue fibrosis in systemic sclerosis. Here, we investigated tankyrases as novel molecular targets for inhibition of canonical Wnt signalling in fibrotic diseases. METHODS: The antifibrotic effects of the tankyrase inhibitor XAV-939 or of siRNA-mediated knockdown of tankyrases were evaluated in the mouse models of bleomycin-induced dermal fibrosis and in experimental fibrosis induced by adenoviral overexpression of a constitutively active TGF-ß receptor I (Ad-TBRI). RESULTS: Inactivation of tankyrases prevented the activation of canonical Wnt signalling in experimental fibrosis and reduced the nuclear accumulation of ß-catenin and the mRNA levels of the target gene c-myc. Treatment with XAV-939 or siRNA-mediated knockdown of tankyrases in the skin effectively reduced bleomycin-induced dermal thickening, differentiation of resting fibroblasts into myofibroblasts and accumulation of collagen. Potent antifibrotic effects were also observed in Ad-TBRI driven skin fibrosis. Inhibition of tankyrases was not limited by local or systemic toxicity. CONCLUSIONS: Inactivation of tankyrases effectively abrogated the activation of canonical Wnt signalling and demonstrated potent antifibrotic effects in well-tolerated doses. Thus, tankyrases might be candidates for targeted therapies in fibrotic diseases.
Assuntos
Fibrose/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Dermatopatias/tratamento farmacológico , Tanquirases/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose/enzimologia , Fibrose/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica , Genes myc/efeitos dos fármacos , Camundongos , Terapia de Alvo Molecular , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , RNA Interferente Pequeno/farmacologia , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/enzimologia , Dermatopatias/enzimologia , Dermatopatias/patologia , Tanquirases/genética , Via de Sinalização Wnt/genéticaRESUMO
OBJECTIVES: Autophagy is a homeostatic process to recycle dispensable and damaged cell organelles. Dysregulation of autophagic pathways has recently been implicated in the pathogenesis of various diseases. Here, we investigated the role of autophagy during joint destruction in arthritis. METHODS: Autophagy in osteoclasts was analysed in vitro and ex vivo by transmission electron microscopy, Western blotting and immunohistochemistry for Beclin1 and Atg7. Small molecule inhibitors, LysMCre-mediated knockout of Atg7 and lentiviral overexpression of Beclin1 were used to modulate autophagy in vitro and in vivo. Osteoclast differentiation markers were quantified by real-time PCR. The extent of bone and cartilage destruction was analysed in human tumour necrosis factor α transgenic (hTNFα tg) mice after adoptive transfer with myeloid specific Atg7-deficient bone marrow. RESULTS: Autophagy was activated in osteoclasts of human rheumatoid arthritis (RA) showing increased expression of Beclin1 and Atg7. TNFα potently induced the expression of autophagy-related genes and activated autophagy in vitro and in vivo. Activation of autophagy by overexpression of Beclin1-induced osteoclastogenesis and enhanced the resorptive capacity of cultured osteoclasts, whereas pharmacologic or genetic inactivation of autophagy prevented osteoclast differentiation. Arthritic hTNFα tg mice transplanted with Atg7(fl/fl)×LysMCre(+) bone marrow cells (BMC) showed reduced numbers of osteoclasts and were protected from TNFα-induced bone erosion, proteoglycan loss and chondrocyte death. CONCLUSIONS: These findings demonstrate that autophagy is activated in RA in a TNFα-dependent manner and regulates osteoclast differentiation and bone resorption. We thus provide evidence for a central role of autophagy in joint destruction in RA.
Assuntos
Artrite Experimental/imunologia , Artrite Experimental/patologia , Autofagia/imunologia , Articulações/patologia , Fator de Necrose Tumoral alfa/imunologia , Transferência Adotiva , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 7 Relacionada à Autofagia , Proteína Beclina-1 , Biomarcadores , Transplante de Medula Óssea , Reabsorção Óssea/imunologia , Reabsorção Óssea/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Osteoclastos/imunologia , Osteoclastos/patologia , Osteoclastos/ultraestrutura , Fator de Necrose Tumoral alfa/genéticaRESUMO
Rheumatoid arthritis (RA) is a common systemic autoimmune disease in developed countries. In clinical treatment, steroids have been used as bridging and adjunctive therapy after disease-modifying anti-rheumatic drug administration. However, the severe side effects caused by the nonspecific targeting of organs followed by long-term administration have limited their usage in RA. In this study, poorly water-soluble triamcinolone acetonide (TA), a highly potent corticosteroid for intra-articular injection, is conjugated on hyaluronic acid (HA) for intravenous purposes with increased specific drug accumulation in inflamed parts for RA. Our results demonstrate that the designed HA/TA coupling reaction reveals >98 % conjugation efficiency in the dimethyl sulfoxide/water system, and the resulting HA-TA conjugates show lower osteoblastic apoptosis compared with that in free TA-treated osteoblast-like NIH3T3 cells. Furthermore, in a collagen-antibody-induced arthritis animal study, HA-TA conjugates enhanced the initiative targeting ability to inflame tissue and reduce the histopathological arthritic changes (score = 0). Additionally, the level of bone formation marker P1NP in HA-TA-treated ovariectomized mice (303.6 ± 40.6 pg/mL) is significantly higher than that in the free TA-treated group (143.1 ± 3.9 pg/mL), indicating the potential for osteoporotic reduction using an efficient HA conjugation strategy for the long-term administration of steroids against RA.
Assuntos
Artrite Reumatoide , Triancinolona Acetonida , Camundongos , Animais , Triancinolona Acetonida/farmacologia , Triancinolona Acetonida/uso terapêutico , Ácido Hialurônico/farmacologia , Células NIH 3T3 , Artrite Reumatoide/tratamento farmacológico , Injeções Intra-ArticularesRESUMO
Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Although O-mannosyltransferase TMTC1 is highly expressed by ovarian cancer, its pathophysiological role in ovarian cancer remains unclear. Here, immunohistochemistry showed that TMTC1 was overexpressed in ovarian cancer tissues compared with adjacent normal ovarian tissues, and high TMTC1 expression was associated with poor prognosis in patients with ovarian cancer. Silencing TMTC1 reduced ovarian cancer cell viability, migration, and invasion in vitro, as well as suppressed peritoneal tumor growth and metastasis in vivo. Moreover, TMTC1 knockdown reduced cell-laminin adhesion, which was associated with the decreased phosphorylation of FAK at pY397. Conversely, TMTC1 overexpression promoted these malignant properties in ovarian cancer cells. Glycoproteomic analysis and Concanavalin A (ConA) pull-down assays showed that integrins ß1 and ß4 were novel O-mannosylated protein substrates of TMTC1. Furthermore, TMTC1-mediated cell migration and invasion were significantly reversed by siRNA-mediated knockdown of integrin ß1 or ß4. Collectively, these results suggest that TMTC1-mediated invasive behaviors are primarily through integrins ß1 and ß4 and that TMTC1 is a potential therapeutic target for ovarian cancer.
Assuntos
Integrina beta1 , Integrina beta4 , Neoplasias Ovarianas , Feminino , Humanos , Proteínas de Transporte , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Integrina beta1/genética , Integrina beta1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/patologia , Integrina beta4/metabolismoRESUMO
GalNAc-type O-glycosylation and its initiating GalNAc transferases (GALNTs) play crucial roles in a wide range of cellular behaviors. Among 20 GALNT members, GALNT2 is consistently associated with poor survival of patients with colorectal cancer in public databases. However, its clinicopathological significance in colorectal cancer remains unclear. In this study, immunohistochemistry showed that GALNT2 was overexpressed in colorectal tumors compared with the adjacent nontumor tissues. GALNT2 overexpression was associated with poor survival of colorectal cancer patients. Forced expression of GALNT2 promoted migration and invasion as well as peritoneal metastasis of colorectal cancer cells. In contrast, GALNT2 knockdown with siRNAs or knockout with CRISPR/Cas9 system suppressed these malignant properties. Interestingly, we found that GALNT2 modified O-glycans on AXL and determined AXL levels via the proteasome-dependent pathway. In addition, the GALNT2-promoted invasiveness was significantly reversed by AXL siRNAs. These findings suggest that GALNT2 promotes colorectal cancer invasion at least partly through AXL.
Assuntos
Neoplasias Colorretais , N-Acetilgalactosaminiltransferases , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Glicosilação , Invasividade Neoplásica , N-Acetilgalactosaminiltransferases/genética , Polipeptídeo N-AcetilgalactosaminiltransferaseRESUMO
The glycoprotein CD44 is a key regulator of malignant behaviors in breast cancer cells. To date, hyaluronic acid (HA)-CD44 signaling pathway has been widely documented in the context of metastatic bone diseases. Core 1 ß1,3-galactosyltransferase (C1GALT1) is a critical enzyme responsible for the elongation of O-glycosylation. Aberrant O-glycans is recognized as a hallmark in cancers. However, the effects of C1GALT1 on CD44 signaling and bone metastasis remain unclear. In this study, IHC analysis indicated that C1GALT1 expression positively correlates with CD44 in breast cancer. Silencing C1GALT1 accumulates the Tn antigen on CD44, which decreases CD44 levels and osteoclastogenic signaling. Mutations in the O-glycosites on the stem region of CD44 impair its surface localization as well as suppress cell-HA adhesion and osteoclastogenic effects of breast cancer cells. Furthermore, in vivo experiments demonstrated the inhibitory effect of silencing C1GALT1 on breast cancer bone metastasis and bone loss. In conclusion, our study highlights the importance of O-glycans in promoting CD44-mediated tumorigenic signals and indicates a novel function of C1GALT1 in driving breast cancer bone metastasis. IMPLICATIONS: Truncation of GalNAc-type O-glycans by silencing C1GALT1 suppresses CD44-mediated osteoclastogenesis and bone metastasis in breast cancer. Targeting the O-glycans on CD44 may serve as a potential therapeutic target for blocking cancer bone metastasis.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Glicosilação , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Osteogênese , Polissacarídeos/metabolismo , Transdução de SinaisRESUMO
Neuroblastoma (NB) is a childhood tumor derived from the sympathoadrenal lineage of the neural crest progenitor cells. Core 1 ß1,3-galactosyltransferase (C1GALT1) controls the crucial step of GalNAc-type O-glycosylation, and its altered expression affects cancer behaviors. However, the role of C1GALT1 in NB tumors remains unclear. Our data showed that C1GALT1 expression was significantly associated with differentiated tumor histology, correlated with TrkA expression, and predicted good prognosis independently in NB. Downregulation of C1GALT1 promotes malignant behaviors of NB cells in vitro and in vivo. Mechanistic investigation showed that knockdown of C1GALT1 in NB cells increased TrkA pulled down through Vicia villosa agglutinin beads, indicating the modulation of O-glycans on TrkA by C1GALT1, and silencing C1GALT1 suppressed the TrkA expression on the NB cell surface. Overexpression of C1GALT1 increased the protein levels of TrkA and promoted the differentiation of NB cells, whereas knockdown of TrkA inhibited C1GALT1-induced neuronal differentiation. Moreover, the inhibitory effects of migration and invasion in C1GALT1-overexpressing NB cells were blocked by TrkA downregulation. C1GALT1 knockdown enhanced AKT phosphorylation but attenuated ERK phosphorylation, and these properties were consistent in C1GALT1-overexpressing NB cells with TrkA knockdown. Taken together, our data provided the first evidence for the existence of GalNAc-type O-glycans on TrkA and altered O-glycan structures by C1GALT1 can regulate TrkA signaling in NB cells. This study sheds light on the novel prognostic role of C1GALT1 in NB and provides new information of C1GALT1 and TrkA on the pathogenesis of NB.