Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(27): 5273-5284, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38946501

RESUMO

Under irradiation of a vacuum ultraviolet (VUV) photon, methane dissociates and yields multiple fragments. This photochemical behavior is not only of fundamental importance but also with wide-ranging implications in several branches of science. Despite that and numerous previous investigations, the product channel branching is still under debate, and the underlying dissociation mechanisms remain elusive. In this study, the photofragment imaging technique was exploited for the first time to map out the momentum and anisotropy parameter distributions of the CH3, CH2, and CH fragments at the 118 nm photolysis wavelength (10.48 eV photon energy). In conjunction with previously reported results of the H atom fragment at 121.6 nm (10.2 eV), a complete set of product channel branching in both two-body and three-body fragmentations is accurately determined. We concluded that extensive nonadiabatic transitions partake in the processes with two-body fragmentations accounting for more than 90% of overall photodissociation, for which the channel branching values for CH2 + H2 and CH3 + H are about 0.66 and 0.25, respectively. Careful kinematic analysis enables us to untangle the intertwined triple fragmentations into the CH2(X̃ 3B1 and ã 1A1) + H + H and CH(X2Π) + H + H2 channels and to evidence their underlying sequential (or stepwise) mechanisms. With the aid of electronic correlation and prior theoretical calculations of the potential energy surfaces, the most probable or dominant dissociation pathways are elucidated. Comparisons with fragmentary reports in the literature on various photochemical aspects are also documented, and discrepancies are clarified. This comprehensive study benchmarks the VUV photochemistry of methane and advances our understanding of this important process.

2.
Angew Chem Int Ed Engl ; 63(37): e202407892, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38945831

RESUMO

The commercialization of all-solid-state Li batteries (ASSLBs) demands solid electrolytes with strong cost-competitiveness, low density (for enabling satisfactory energy densities), and decent anode compatibility (the need for cathode compatibility can be circumvented by the cathode coating techniques that are widely applied in sulfide-based ASSLBs). However, none of the reported oxide, sulfide, or chloride solid electrolytes meets these requirements simultaneously. Here, we design a Li7P3S7.5O3.5 (LPSO) solid electrolyte, which shows a combination of all the aforementioned characteristics. The synthesis of this material does not need the expensive Li2S, so the raw materials cost is only $14.42/kg, which, unlike most solid electrolytes, lies below the $50/kg threshold for commercialization. The density of LPSO is 1.70 g cm-3, considerably lower than those of the oxide (typically above 5 g cm-3) and chloride (around 2.5 g cm-3) solid electrolytes. Besides, LPSO also shows excellent anode compatibility. The Li|LPSO|Li cell cycles stably with a potential of ~50 mV under 0.1 mA cm-2 for over 4200 h at 25 °C, and the all-solid-state pouch cell with the Si anode shows a capacity retention of 89.29 % after 200 cycles under 88.6 mA g-1 at 60 °C.

3.
Angew Chem Int Ed Engl ; 62(26): e202218165, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36918348

RESUMO

Room temperature sodium-sulfur (RT Na-S) batteries are highly competitive as potential energy storage devices. Nevertheless, their actually achieved reversible capacities are far below the theoretical value due to incomplete transformation of polysulfides. Herein, atomically dispersed Fe-N/S active center by regulating the second-shell coordinating environment of Fe single atom is proposed. The Fe-N4 S2 coordination structure with enhanced local electronic concentration around the Fermi level is revealed via synchrotron radiation X-ray absorption spectroscopy (XAS) and theoretical calculations, which can not only significantly promote the transformation kinetics of polysulfides, but induce uniform Na deposition for dendrite-free Na anode. As a result, the obtained S cathode delivers a high initial reversible capacity of 1590 mAh g-1 , nearly the theoretical value. This work opens up a new avenue to facilitate the complete transformation of polysulfides for RT Na-S batteries.


Assuntos
Ferro , Ferro/química , Elétrons , Modelos Moleculares , Conformação Molecular , Difração de Raios X
4.
Nanoscale Adv ; 2(4): 1380-1394, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132298

RESUMO

Persistent luminescence nanoparticles (PLNPs) are new luminescent materials that can store the excitation energy quickly and persistently emit it after ceasing excitation sources. Due to the advantages of long-lasting luminescence without constant excitation, PLNPs have been widely used in biomedical applications. Visible light excitable PLNPs (VPLNPs) and near-infrared excitable PLNPs (NPLNPs) are two kinds of novel and promising PLNPs. Compared to conventional PLNPs, VPLNPs and NPLNPs have the characteristics of low tissue damage, deep tissue penetration, and high signal-to-noise ratio. With these special features, they have great potential in applications such as long-term tracing, deep-tissue bioimaging, and precise treatment. In this review, we introduce the common strategy of constructing VPLNPs and NPLNPs based on electronic structure engineering and the applications of VPLNPs and NPLNPs in biomedicine. This review article aims to offer valuable information about the progress and development direction of VPLNPs and NPLNPs, promoting more applications in biomedicine, materials science, energy engineering, and environmental technologies in the future.

5.
ACS Sens ; 4(8): 2124-2130, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31313911

RESUMO

Detection of biomarkers in complex samples is a significant health plan strategy for medical diagnosis, therapy monitoring, and health management. However, high background noise resulting from impurities and other analytes in complex samples has hampered the improvement of detection sensitivity and accuracy. Herein, an ultralow background biochip based on time-gated luminescent probes supported by photonic crystals (PCs) was successfully developed for detection of bladder cancer (BC)-related miRNA biomarkers with high sensitivity and specificity in urine samples. Coupled with the time-gated luminescence of long-lifetime luminescence probes and the luminescence-enhanced capability of PCs, the short-lived autofluorescence can be efficiently removed; thus, the detection sensitivity will be significantly improved. Benefiting from these merits, a detection limit of 26.3 fM is achieved. Furthermore, the biochip exhibits excellent performance in urinary miRNA detection, and good recoveries are also obtained. The developed biochip possesses unique properties of ultralow background and luminescence enhancement, thus offering a suitable tool for the detection of BC-related miRNA in urine. With rational design of probe sequences, the biochip holds great potential for many other biomarkers in real patient samples, making it valuable in areas such as medical diagnosis and disease evaluation.


Assuntos
Biomarcadores Tumorais/urina , Técnicas Biossensoriais , Substâncias Luminescentes/química , Medições Luminescentes , MicroRNAs/urina , Neoplasias da Bexiga Urinária/química , Humanos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo , Neoplasias da Bexiga Urinária/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA