Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cancer ; 23(1): 186, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39237909

RESUMO

Peritumoral hepatocytes are critical components of the liver cancer microenvironment, However, the role of peritumoral hepatocytes in the local tumor immune interface and the underlying molecular mechanisms have not been elucidated. YTHDF2, an RNA N6-methyladenosine (m6A) reader, is critical for liver tumor progression. The function and regulatory roles of YTHDF2 in peritumoral hepatocytes are unknown. This study demonstrated that oxaliplatin (OXA) upregulated m6A modification and YTHDF2 expression in hepatocytes. Studies using tumor-bearing liver-specific Ythdf2 knockout mice revealed that hepatocyte YTHDF2 suppresses liver tumor growth through CD8+ T cell recruitment and activation. Additionally, YTHDF2 mediated the response to immunotherapy. Mechanistically, OXA upregulated YTHDF2 expression by activating the cGAS-STING signaling pathway and consequently enhanced the therapeutic outcomes of immunotherapeutic interventions. Ythdf2 stabilized Cx3cl1 transcripts in an m6A-dependent manner, regulating the interplay between CD8+ T cells and the progression of liver malignancies. Thus, this study elucidated the novel role of hepatocyte YTHDF2, which promotes therapy-induced antitumor immune responses in the liver. The findings of this study provide valuable insights into the mechanism underlying the therapeutic benefits of targeting YTHDF2.


Assuntos
Linfócitos T CD8-Positivos , Quimiocina CX3CL1 , Hepatócitos , Neoplasias Hepáticas , Oxaliplatina , Proteínas de Ligação a RNA , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Hepatócitos/metabolismo , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Oxaliplatina/farmacologia , Microambiente Tumoral/imunologia , Camundongos Knockout , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Antineoplásicos/farmacologia
2.
Inorg Chem ; 59(20): 15365-15374, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33021778

RESUMO

Motivated by the predicted unusual short Ni-Ni bond length that is comparable to the intermetallic distance anticipated for the triple bond, the nature of Ni-Ni bonding interaction in the triply carbonyl-bridged geometry of the neutral Ni2(CO)5 complex has been investigated using a range of state-of-the-art quantum chemistry methods. The elaborate analyses manifest that the tribridged Ni2(CO)5 features triple three-center two-electron Ni-C-Ni bonds instead of Ni≡Ni triple bond. The electron pair donated by the bridging carbonyl ligand should be shared by both nickel centers to achieve the favored (18, 18) configuration.

3.
Phys Chem Chem Phys ; 22(41): 23773-23784, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33063806

RESUMO

The homoleptic homodinuclear nickel carbonyl anions Ni2(CO)n- (n = 4-6) are mass-selected in the gas phase and examined with anion photoelectron velocity-map imaging spectroscopy combined with density functional calculations. The doubly carbonyl-bridged structures are found to be favorable for Ni2(CO)n- (n = 4-6). The nature of Ni-Ni bonding in these complexes is analysed with the aid of a range of state-of-the-art quantum chemistry methods. Despite the absence of direct multiple Ni-Ni bonds, the two nickel atoms in Ni2(CO)n- (n = 4-6) complexes are joined by two bridging carbonyl ligands via the sharing three-center two-electron Ni-C-Ni bond in turn to achieve the (16,16), (16,18), and eventually the favored (18,18) configurations.

4.
Small ; 15(46): e1903952, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31565864

RESUMO

Solid polymer electrolytes (SPEs)-based all-solid-state lithium-sulfur batteries (ASSLSBs) have attracted extensive research attention due to their high energy density and safe operation, which provide potential solutions to the increasing need for harnessing higher energy densities. There is little progress made, however, in the development of ASSLSBs to improve simultaneously energy density and long-term cycling life, mostly due to the "shuttle effect" of lithium polysulfide intermediates in the SPEs and the low interfacial compatibility between the metal lithium anode and the SPE. In this work, the issues of solid/solid interfacial architecturing through atomic layer deposition of Al2 O3 on poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide SPE surface are effectively addressed. The Al2 O3 coating promotes the suppression of lithium dendrite formation for over 500 h. ASSLSBs fabricated with two layers of Al2 O3 -coated SPE deliver high gravimetric/areal capacity and Coulombic efficiency, as well as excellent cycling stability and extremely low self-discharge rate. This work provides not only a simple and effective approach to boost the electrochemical performances of SPE-based ASSLSBs, but also enriches the fundamental understanding regarding the underlying mechanism responsible for their performance.

5.
Environ Sci Technol ; 51(7): 4108-4116, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28287717

RESUMO

We study dissolution in a chemically heterogeneous medium consisting of two minerals with contrasting initial structure and transport properties. We perform a reactive transport experiment using CO2-saturated brine at reservoir conditions in a millimeter-scale composite core composed of Silurian dolomite and Ketton limestone (calcite) arranged in series. We repeatedly image the composite core using X-ray microtomography (XMT) and collect effluent to assess the individual mineral dissolution. The mineral dissolution from image analysis was comparable to that measured from effluent analysis using inductively coupled plasma mass spectrometry (ICP-MS). We find that the ratio of the effective reaction rate of calcite to that of dolomite decreases with time, indicating the influence of dynamic transport effects originating from changes in pore structure coupled with differences in intrinsic reaction rates. Moreover, evolving flow and transport heterogeneity in the initially heterogeneous dolomite is a key determinant in producing a two-stage dissolution in the calcite. The first stage is characterized by a uniform dissolution of the pore space, while the second stage follows a single-channel growth regime. This implies that spatial memory effects in the medium with a heterogeneous flow characteristic (dolomite) can change the dissolution patterns in the medium with a homogeneous flow characteristic (calcite).


Assuntos
Minerais/química , Microtomografia por Raio-X , Fenômenos Físicos
6.
Water Resour Res ; 53(12): 10274-10292, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30333671

RESUMO

We imaged the steady state flow of brine and decane in Bentheimer sandstone. We devised an experimental method based on differential imaging to examine how flow rate impacts impact the pore-scale distribution of fluids during coinjection. This allows us to elucidate flow regimes (connected, or breakup of the nonwetting phase pathways) for a range of fractional flows at two capillary numbers, Ca, namely 3.0 × 10-7 and 7.5 × 10-6. At the lower Ca, for a fixed fractional flow, the two phases appear to flow in connected unchanging subnetworks of the pore space, consistent with conventional theory. At the higher Ca, we observed that a significant fraction of the pore space contained sometimes oil and sometimes brine during the 1 h scan: this intermittent occupancy, which was interpreted as regions of the pore space that contained both fluid phases for some time, is necessary to explain the flow and dynamic connectivity of the oil phase; pathways of always oil-filled portions of the void space did not span the core. This phase was segmented from the differential image between the 30 wt % KI brine image and the scans taken at each fractional flow. Using the grey scale histogram distribution of the raw images, the oil proportion in the intermittent phase was calculated. The pressure drops at each fractional flow at low and high flow rates were measured by high-precision differential pressure sensors. The relative permeabilities and fractional flow obtained by our experiment at the mm-scale compare well with data from the literature on cm-scale samples.

7.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912821

RESUMO

Retinal organoids (ROs) are a three-dimensional culture system mimicking human retinal features that have differentiated from induced pluripotent stem cells (iPSCs) under specific conditions. Synapse development and maturation in ROs have been studied immunocytochemically and functionally. However, the direct evidence of the synaptic contact ultrastructure is limited, containing both special ribbon synapses and conventional chemical synapses. Transmission electron microscopy (TEM) is characterized by high resolution and a respectable history elucidating retinal development and synapse maturation in humans and various species. It is a powerful tool to explore synaptic structure in ROs and is widely used in the research field of ROs. Therefore, to better explore the structure of RO synaptic contacts at the nanoscale and obtain high-quality microscopic evidence, we developed a simple and repeatable method of RO TEM sample preparation. This paper describes the protocol, reagents used, and detailed steps, including RO fixation preparation, post fixation, embedding, and visualization.


Assuntos
Microscopia Eletrônica de Transmissão , Organoides , Retina , Organoides/ultraestrutura , Organoides/citologia , Retina/citologia , Retina/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Animais , Sinapses/ultraestrutura
8.
Nat Commun ; 15(1): 6675, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107312

RESUMO

Renewable-driven electrocatalytic nitrate conversion offers a promising alternative to alleviate nitrate pollution and simultaneously harvest green ammonia. However, due to the complex proton-electron transfer processes, the reaction mechanism remains elusive, thereby limiting energy efficiency. Here, we adopt Ni(OH)2 as a model catalyst to investigate the dynamic evolution of the reaction interface. A proposed OH cycle mechanism involves the formation of a locally OH-enriched microenvironment to promote the hydrogenation process, which is identified through in-situ spectroscopy and isotopic labelling. By further activating the dynamic state through the implementation of surface vacancies via plasma, we achieve a high Faradaic efficiency of almost 100%. The activated interface accelerates the OH cycle by enhancing dehydroxylation, water dissociation, and OH adsorption, thereby promoting nitrate electroreduction and inhibiting hydrogen evolution. We anticipate that rational activation of the dynamic interfacial state can facilitate electrocatalytic interface activity and improve reaction efficiency.

9.
Front Aging Neurosci ; 15: 1264143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076536

RESUMO

Impaired bed mobility (IBM) is a symptom characteristic of patients having difficulty intentionally moving their bodies during nighttime sleep. IBM is one of the most common nocturnal symptoms of Parkinson's disease (PD) and may lead to extreme pain and even death; it also increases the burden on the patients' caregivers. In this systematic review, we included 19 studies involving a total of 1,407 patients with PD to observe the causes, assessment methods, and treatment options for IBM. We conclude that the extent of IBM is positively correlated with the severity of symptoms such as disease duration, dyskinesia and decreased sleep quality in patients with PD, and the evidence implies that IBM may be able to serve as a prodromal feature in the development of PD. IBM probably results from low nocturnal dopamine concentrations, reduced function of the spinal tract, torque problems in the muscles, and aging. Therefore, treatment is mostly based on continuously increasing the patient's nocturnal dopamine concentration, while deep brain stimulation (DBS) also has a mitigating effect on IBM. Both scales and sensors are commonly used to measure the severity of IBM, the wearable device monitoring and scales being updated makes measurements easier and more accurate. The future of the advancement in this field lies in the use of more family-oriented devices (such as smart phones or watches and bracelets, etc.) to monitor IBM's symptoms and select the appropriate therapeutic treatment according to the severity of the symptoms to relieve patients' suffering.

10.
J Colloid Interface Sci ; 613: 786-795, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35074705

RESUMO

HYPOTHESIS: The macroscopic movement of subsurface fluids involved in CO2 storage, groundwater, and petroleum engineering applications is controlled by interfacial forces in the pores of rocks. Recent advances in modelling these systems has arisen from approaches simulating flow through a digital representation of the complex pore structure. However, further progress is limited by difficulties in characterising the spatial distribution of the wetting state within the pore structure. In this work, we show how observations of the fluid coverage of mineral surfaces within the pores of rocks can be used as the basis for a quantitative 3D characterisation of heterogeneous wetting states throughout rock pore structures. EXPERIMENTS: We demonstrate the approach with water-oil fluid pairs on rocks with distinct lithologies (sandstone and carbonate) and wetting states (hydrophilic, intermediate wetting, and heterogeneously wetting). FINDINGS: Fluid surface coverage the within rock pores is a robust signal of the wetting state across varying rock types and wetting states. The wetting state can be quantified and the resulting 3D maps can be used as a deterministic input to pore scale models. These may be applied to multiphase flow problems in porous media ranging from soil science to fuel cells.

11.
J Colloid Interface Sci ; 582(Pt A): 283-290, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32823129

RESUMO

HYPOTHESIS: We define contact angles, θ, during displacement of three fluid phases in a porous medium using energy balance, extending previous work on two-phase flow. We test if this theory can be applied to quantify the three contact angles and wettability order in pore-scale images of three-phase displacement. THEORY: For three phases labelled 1, 2 and 3, and solid, s, using conservation of energy ignoring viscous dissipation (Δa1scosθ12-Δa12-ϕκ12ΔS1)σ12=(Δa3scosθ23+Δa23-ϕκ23ΔS3)σ23+Δa13σ13, where ϕ is the porosity, σ is the interfacial tension, a is the specific interfacial area, S is the saturation, and κ is the fluid-fluid interfacial curvature. Δ represents the change during a displacement. The third contact angle, θ13 can be found using the Bartell-Osterhof relationship. The energy balance is also extended to an arbitrary number of phases. FINDINGS: X-ray imaging of porous media and the fluids within them, at pore-scale resolution, allows the difference terms in the energy balance equation to be measured. This enables wettability, the contact angles, to be determined for complex displacements, to characterize the behaviour, and for input into pore-scale models. Two synchrotron imaging datasets are used to illustrate the approach, comparing the flow of oil, water and gas in a water-wet and an altered-wettability limestone rock sample. We show that in the water-wet case, as expected, water (phase 1) is the most wetting phase, oil (phase 2) is intermediate wet, while gas (phase 3) is most non-wetting with effective contact angles of θ12≈48° and θ13≈44°, while θ23=0 since oil is always present in spreading layers. In contrast, for the altered-wettability case, oil is most wetting, gas is intermediate-wet, while water is most non-wetting with contact angles of θ12=134°±~10°,θ13=119°±~10°, and θ23=66°±~10°.

12.
ACS Appl Mater Interfaces ; 13(29): 34003-34011, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34235914

RESUMO

Extending the operating range of fuel cells to higher current densities is limited by the ability of the cell to remove the water produced by the electrochemical reaction, avoiding flooding of the gas diffusion layers. It is therefore of great interest to understand the complex and dynamic mechanisms of water cluster formation in an operando fuel cell setting as this can elucidate necessary changes to the gas diffusion layer properties with the goal of minimizing the number, size, and instability of the water clusters formed. In this study, we investigate the cluster formation process using X-ray tomographic microscopy at 1 Hz frequency combined with interfacial curvature analysis and volume-of-fluid simulations to assess the pressure evolution in the water phase. This made it possible to observe the increase in capillary pressure when the advancing water front had to overcome a throat between two neighboring pores and the nuanced interactions of volume and pressure evolution during the droplet formation and its feeding path instability. A 2 kPa higher breakthrough pressure compared to static ex situ capillary pressure versus saturation evaluations was observed, which suggests a rethinking of the dynamic liquid water invasion process in polymer electrolyte fuel cell gas diffusion layers.

13.
J Colloid Interface Sci ; 576: 486-495, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502883

RESUMO

HYPOTHESIS: Based on energy balance during two-phase displacement in porous media, it has recently been shown that a thermodynamically consistent contact angle can be determined from micro-tomography images. However, the impact of viscous dissipation on the energy balance has not been fully understood. Furthermore, it is of great importance to determine the spatial distribution of wettability. We use direct numerical simulation to validate the determination of the thermodynamic contact angle both in an entire domain and on a pore-by-pore basis. SIMULATIONS: Two-phase direct numerical simulations are performed on complex 3D porous media with three wettability states: uniformly water-wet, uniformly oil-wet, and non-uniform mixed-wet. Using the simulated fluid configurations, the thermodynamic contact angle is computed, then compared with the input contact angles. FINDINGS: The impact of viscous dissipation on the energy balance is quantified; it is insignificant for water flooding in water-wet and mixed-wet media, resulting in an accurate estimation of a representative contact angle for the entire domain even if viscous effects are ignored. An increasing trend in the computed thermodynamic contact angle during water injection is shown to be a manifestation of the displacement sequence. Furthermore, the spatial distribution of wettability can be represented by the thermodynamic contact angle computed on a pore-by-pore basis.

14.
Phys Rev E ; 102(2-1): 023302, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942424

RESUMO

A pore-network model is an upscaled representation of the pore space and fluid displacement, which is used to simulate two-phase flow through porous media. We use the results of pore-scale imaging experiments to calibrate and validate our simulations, and specifically to find the pore-scale distribution of wettability. We employ energy balance to estimate an average, thermodynamic, contact angle in the model, which is used as the initial estimate of contact angle. We then adjust the contact angle of each pore to match the observed fluid configurations in the experiment as a nonlinear inverse problem. The proposed algorithm is implemented on two sets of steady state micro-computed-tomography experiments for water-wet and mixed-wet Bentheimer sandstone. As a result of the optimization, the pore-by-pore error between the model and experiment is decreased to less than that observed between repeat experiments on the same rock sample. After calibration and matching, the model predictions for capillary pressure and relative permeability are in good agreement with the experiments. The proposed algorithm leads to a distribution of contact angle around the thermodynamic contact angle. We show that the contact angle is spatially correlated over around 4 pore lengths, while larger pores tend to be more oil-wet. Using randomly assigned distributions of contact angle in the model results in poor predictions of relative permeability and capillary pressure, particularly for the mixed-wet case.

15.
Proc Math Phys Eng Sci ; 476(2240): 20200040, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32922149

RESUMO

We identify a distinct two-phase flow invasion pattern in a mixed-wet porous medium. Time-resolved high-resolution synchrotron X-ray imaging is used to study the invasion of water through a small rock sample filled with oil, characterized by a wide non-uniform distribution of local contact angles both above and below 90°. The water advances in a connected front, but throats are not invaded in decreasing order of size, as predicted by invasion percolation theory for uniformly hydrophobic systems. Instead, we observe pinning of the three-phase contact between the fluids and the solid, manifested as contact angle hysteresis, which prevents snap-off and interface retraction. In the absence of viscous dissipation, we use an energy balance to find an effective, thermodynamic, contact angle for displacement and show that this angle increases during the displacement. Displacement occurs when the local contact angles overcome the advancing contact angles at a pinned interface: it is wettability which controls the filling sequence. The product of the principal interfacial curvatures, the Gaussian curvature, is negative, implying well-connected phases which is consistent with pinning at the contact line while providing a topological explanation for the high displacement efficiencies in mixed-wet media.

16.
Sci Rep ; 10(1): 8534, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444675

RESUMO

Rapid implementation of global scale carbon capture and storage is required to limit temperature rises to 1.5 °C this century. Depleted oilfields provide an immediate option for storage, since injection infrastructure is in place and there is an economic benefit from enhanced oil recovery. To design secure storage, we need to understand how the fluids are configured in the microscopic pore spaces of the reservoir rock. We use high-resolution X-ray imaging to study the flow of oil, water and CO2 in an oil-wet rock at subsurface conditions of high temperature and pressure. We show that contrary to conventional understanding, CO2 does not reside in the largest pores, which would facilitate its escape, but instead occupies smaller pores or is present in layers in the corners of the pore space. The CO2 flow is restricted by a factor of ten, compared to if it occupied the larger pores. This shows that CO2 injection in oilfields provides secure storage with limited recycling of gas; the injection of large amounts of water to capillary trap the CO2 is unnecessary.

17.
Proc Math Phys Eng Sci ; 476(2244): 20200671, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33402876

RESUMO

We use synchrotron X-ray micro-tomography to investigate the displacement dynamics during three-phase-oil, water and gas-flow in a hydrophobic porous medium. We observe a distinct gas invasion pattern, where gas progresses through the pore space in the form of disconnected clusters mediated by double and multiple displacement events. Gas advances in a process we name three-phase Haines jumps, during which gas re-arranges its configuration in the pore space, retracting from some regions to enable the rapid filling of multiple pores. The gas retraction leads to a permanent disconnection of gas ganglia, which do not reconnect as gas injection proceeds. We observe, in situ, the direct displacement of oil and water by gas as well as gas-oil-water double displacement. The use of local in situ measurements and an energy balance approach to determine fluid-fluid contact angles alongside the quantification of capillary pressures and pore occupancy indicate that the wettability order is oil-gas-water from most to least wetting. Furthermore, quantifying the evolution of Minkowski functionals implied well-connected oil and water, while the gas connectivity decreased as gas was broken up into discrete clusters during injection. This work can be used to design CO2 storage, improved oil recovery and microfluidic devices.

18.
Phys Rev E ; 102(2-1): 023110, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942482

RESUMO

We use fast synchrotron x-ray microtomography to investigate the pore-scale dynamics of water injection in an oil-wet carbonate reservoir rock at subsurface conditions. We measure, in situ, the geometric contact angles to confirm the oil-wet nature of the rock and define the displacement contact angles using an energy-balance-based approach. We observe that the displacement of oil by water is a drainagelike process, where water advances as a connected front displacing oil in the center of the pores, confining the oil to wetting layers. The displacement is an invasion percolation process, where throats, the restrictions between pores, fill in order of size, with the largest available throats filled first. In our heterogeneous carbonate rock, the displacement is predominantly size controlled; wettability has a smaller effect, due to the wide range of pore and throat sizes, as well as largely oil-wet surfaces. Wettability only has an impact early in the displacement, where the less oil-wet pores fill by water first. We observe drainage associated pore-filling dynamics including Haines jumps and snap-off events. Haines jumps occur on single- and/or multiple-pore levels accompanied by the rearrangement of water in the pore space to allow the rapid filling. Snap-off events are observed both locally and distally and the capillary pressure of the trapped water ganglia is shown to reach a new capillary equilibrium state. We measure the curvature of the oil-water interface. We find that the total curvature, the sum of the curvatures in orthogonal directions, is negative, giving a negative capillary pressure, consistent with oil-wet conditions, where displacement occurs as the water pressure exceeds that of the oil. However, the product of the principal curvatures, the Gaussian curvature, is generally negative, meaning that water bulges into oil in one direction, while oil bulges into water in the other. A negative Gaussian curvature provides a topological quantification of the good connectivity of the phases throughout the displacement.

19.
Dalton Trans ; 49(43): 15256-15266, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33084676

RESUMO

The heterodinuclear silver tetracarbonyl-iron anion was generated in the gas phase and studied by joint photoelectron velocity map imaging spectroscopy and quantum chemical calculations. The AgFe(CO)4- anion is characterized to be an 18-electron complex with the silver atom covalently bonded to the anionic tetracarbonyl-iron, an isolobal analogue of the methyl radical. The bonding analyses using a range of state-of-the-art quantum chemistry methods revealed a peculiar decentralized bonding situation, where the silver atom is covalently bonded to both the iron center and the vicinal carbon atoms in the form of an electron-sharing σ bond.

20.
J Colloid Interface Sci ; 552: 59-65, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31102849

RESUMO

Conservation of energy is used to derive a thermodynamically-consistent contact angle, θt, when fluid phase 1 displaces phase 2 in a porous medium. Assuming no change in Helmholtz free energy between two local equilibrium states we find that Δa1scosθt=κϕΔS1+Δa12, where a is the interfacial area per unit volume, ϕ is the porosity, S is the saturation and κ the curvature of the fluid-fluid interface. The subscript s denotes the solid, and we consider changes, Δ, in saturation and area. With the advent of high-resolution time-resolved three-dimensional X-ray imaging, all the terms in this expression can be measured directly. We analyse imaging datasets for displacement of oil by water in a water-wet and a mixed-wet sandstone. For the water-wet sample, the curvature is positive and oil bulges into the brine with almost spherical interfaces. In the mixed-wet case, larger interfacial areas are found, as the oil resides in layers. The mean curvature is close to zero, but the interface tends to bulge into brine in one direction, while brine bulges into oil in the other. We compare θt with the values measured geometrically in situ on the pore-scale images, θg. The thermodynamic angle θt provides a robust and consistent characterization of wettability. For the water-wet case the calculated value of θt gives an accurate prediction of multiphase flow properties using pore-scale modelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA