Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Eur J Nutr ; 63(3): 965-976, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265751

RESUMO

PURPOSE: Weight cycling is a phenomenon characterized by fluctuating body weight that is commonly observed in individuals employing intentional weight loss methods. Despite its prevalence, the impact of weight cycling on health remains equivocal. The current investigation aimed to examine the effects of weight cycling on liver health. METHODS: The weight cycling model was established by switching the feeding method of mice between ad libitum (AL) and restricted intake (DR or 60% of AL) of the breeding diet to cause weight gain and weight loss, respectively. The weight cycling model comprised two and a half cycles, with one group terminating the experience during the weight-gain period (S-AL) and the other during the weight-loss period (S-DR). Liver tissue was collected to investigate morphology alterations, apoptosis, lipid metabolism, and mitochondrial homeostasis. RESULTS: The results demonstrated that the termination point of weight cycling affected body weight and hepatic steatosis. All parameters examined in the S-DR mice exhibited a comparable trend to those observed in the DR mice. Notably, S-AL mice showed a significant increase in lipid metabolism-related proteins in the liver compared to AL-fed mice, along with reduced lipid droplets. Moreover, hepatic apoptosis and fibrosis were exacerbated in the S-AL mice compared to AL mice, whereas mitochondrial fusion, biogenesis, and mitophagy were decreased in the S-AL mice. CONCLUSION: Weight cycling ending in weight gain exacerbated hepatic fibrosis, potentially by inducing apoptosis or disrupting mitochondrial homeostasis. Conversely, weight cycling ending in weight loss demonstrated beneficial effects on hepatic health.


Assuntos
Fígado , Ciclo de Peso , Camundongos , Masculino , Animais , Fígado/metabolismo , Cirrose Hepática , Aumento de Peso , Redução de Peso , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542526

RESUMO

The early detection of cognitive decline in Parkinson's disease is important for providing drug therapy and non-pharmacological management. The circulating microRNAs present in plasma are promising biomarkers of PD with dementia (PDD) due to their critical roles in synaptic plasticity and the regulation of neurodegeneration-associated proteins. In this study, we aimed to identify plasma microRNAs that may differentiate PD with or without cognitive impairment. Global microRNA expression was obtained from a discovery set of 123 participants who were divided into four groups, namely normal controls (HC), PD with no dementia (PDND), PD with mild cognitive impairment (PD-MCI), and PDD, using next-generation sequencing. The BOLD selector was used for microRNA candidate selection. Six miRNAs, namely miR-203a-3p, miR-626, miR-662, miR-3182, miR-4274, and miR-4295, were clustered as potential candidates for use in identifying PDND from PD-MCI. Another independent cohort of 120 participants was further recruited in a validation step in order to detect candidate microRNAs via droplet digital PCR (ddPCR), which was used for its high sensitivity in detecting low miRNA concentrations. Our results show that the ratio of miR-203a-3p/miR-16-5p, in which miR-16-5p was used as a reference control miRNA, was significantly increased in PDD compared to that seen in PD-MCI and PDND individually, and was negatively correlated with the MoCA scores (r = -0.237, p = 0.024) in patients with PD. However, there was no significant difference in the ratio of miR-203a-3p/miR-16-5p between HC and PDND, PD-MCI, or PDD individually. The ROC curve of the logistic regression model, factoring in the variables of age, the ratio of miR-203a-3p/miR-16-5p, and the UPDRS III score, demonstrated an AUC of 0.883. Our findings suggest that the ratio of miR-203a-3p/miR-16-5p, used with age and motor score, could be a predictor of dementia among PD patients.


Assuntos
MicroRNA Circulante , Demência , MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , MicroRNAs/metabolismo , Biomarcadores , Demência/diagnóstico , Demência/genética
3.
Biogerontology ; 24(3): 391-401, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802043

RESUMO

Non-alcoholic fatty liver disease is associated with ageing, and impaired mitochondrial homeostasis is the main cause for hepatic ageing. Caloric restriction (CR) is a promising therapeutic approach for fatty liver. The purpose of the present study was to investigate the possibility of early-onset CR in decelerating the progression of ageing-related steatohepatitis. The putative mechanism associated with mitochondria was further determined. C57BL/6 male mice at 8 weeks of age were randomly assigned to one of three treatments: Young-AL (AL, ad libitum), Aged-AL, or Aged-CR (60% intake of AL). Mice were sacrificed when they were 7 months old (Young) or 20 months old (Aged). Aged-AL mice displayed the greatest body weight, liver weight, and liver relative weight among treatments. Steatosis, lipid peroxidation, inflammation, and fibrosis coexisted in the aged liver. Mega mitochondria with short, randomly organized crista were noticed in the aged liver. The CR ameliorated these unfavourable outcomes. The level of hepatic ATP decreased with ageing, but this was reversed by CR. Ageing caused a decrease in mitochondrial-related protein expressions of respiratory chain complexes (NDUFB8 and SDHB) and fission (DRP1), but an increase in proteins related to mitochondrial biogenesis (TFAM), and fusion (MFN2). CR reversed the expression of these proteins in the aged liver. Both Aged-CR and Young-AL revealed a comparable pattern of protein expression. To summarize, this study demonstrated the potential of early-onset CR in preventing ageing-associated steatohepatitis, and maintaining mitochondrial functions may contribute to CR's protection during hepatic ageing.


Assuntos
Restrição Calórica , Fígado Gorduroso , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Mitocôndrias , Fígado Gorduroso/prevenção & controle , Envelhecimento/metabolismo , Homeostase
4.
J Neuroinflammation ; 18(1): 238, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656124

RESUMO

BACKGROUND: Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration. METHODS: We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation. RESULTS: Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group. CONCLUSIONS: Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro.


Assuntos
Axônios/metabolismo , Histona Desacetilases/metabolismo , NF-kappa B/metabolismo , Regeneração Nervosa/fisiologia , Fenilbutiratos/farmacologia , Remielinização/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , NF-kappa B/antagonistas & inibidores , Regeneração Nervosa/efeitos dos fármacos , Fenilbutiratos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Remielinização/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/patologia , Neuropatia Ciática , Células THP-1
5.
J Biomed Sci ; 28(1): 58, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364371

RESUMO

Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Instabilidade Genômica/fisiologia , Animais , Humanos
6.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947104

RESUMO

Peripheral compressive neuropathy causes significant neuropathic pain, muscle weakness and prolong neuroinflammation. Surgical decompression remains the gold standard of treatment but the outcome is suboptimal with a high recurrence rate. From mechanical compression to chemical propagation of the local inflammatory signals, little is known about the distinct neuropathologic patterns and the genetic signatures after nerve decompression. In this study, controllable mechanical constriction forces over rat sciatic nerve induces irreversible sensorimotor dysfunction with sustained local neuroinflammation, even 4 weeks after nerve release. Significant gene upregulations are found in the dorsal root ganglia, regarding inflammatory, proapoptotic and neuropathic pain signals. Genetic profiling of neuroinflammation at the local injured nerve reveals persistent upregulation of multiple genes involving oxysterol metabolism, neuronal apoptosis, and proliferation after nerve release. Further validation of the independent roles of each signal pathway will contribute to molecular therapies for compressive neuropathy in the future.


Assuntos
Lesões por Esmagamento/patologia , Descompressão Cirúrgica , Neuropatia Ciática/patologia , Animais , Axônios/patologia , Constrição , Lesões por Esmagamento/genética , Lesões por Esmagamento/imunologia , Lesões por Esmagamento/cirurgia , Denervação , Gânglios Espinais/patologia , Perfilação da Expressão Gênica , Hiperalgesia/etiologia , Imunidade Inata , Inflamação , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Neuralgia/etiologia , Período Pós-Operatório , Ratos , Ratos Sprague-Dawley , Remielinização , Neuropatia Ciática/genética , Neuropatia Ciática/imunologia , Neuropatia Ciática/cirurgia
7.
Dev Biol ; 449(2): 122-131, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826398

RESUMO

Axolotls have amazing abilities to regenerate their lost limbs. Nerve and wound epidermis have great impacts on this regeneration. Histone deacetylases (HDACs) have been shown to play roles in the regeneration of amphibian tails and limbs. In this study, a bi-phasic up-regulation of HDAC1 was noted before early differentiation stage of axolotl limb regeneration. Limb regeneration was delayed in larvae incubated with an HDAC inhibitor MS-275. Local injection of MS-275 or TSA, another HDAC inhibitor, into amputation sites of the juveniles did not interfere with wound healing but more profoundly inhibited local HDAC activities and blastema formation/limb regeneration. Elevation of HDAC1 expression was more apparent in wound epidermis than in mesenchyme. Prior denervation prohibited this elevation and limb regeneration. Supplementation of nerve factors BMP7, FGF2, and FGF8 in the stump ends after amputation on denervated limbs not only enabled HDAC1 up-regulation but also led to more extent of limb regeneration. In conclusion, nerve-mediated HDAC1 expression is required for blastema formation and limb regeneration.


Assuntos
Ambystoma mexicanum/fisiologia , Extremidades/fisiologia , Histona Desacetilase 1/metabolismo , Regeneração/fisiologia , Ambystoma mexicanum/cirurgia , Amputação Cirúrgica , Animais , Benzamidas/farmacologia , Proteína Morfogenética Óssea 7/farmacologia , Denervação/métodos , Extremidades/inervação , Extremidades/cirurgia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Larva/efeitos dos fármacos , Larva/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Piridinas/farmacologia , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
8.
Hum Mol Genet ; 27(6): 1039-1054, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29346572

RESUMO

Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.


Assuntos
Adaptação Ocular/genética , Olho/embriologia , Animais , Metilação de DNA , Epigênese Genética/genética , Perfilação da Expressão Gênica , Impressão Genômica , Camundongos , Camundongos Endogâmicos/embriologia , Camundongos Endogâmicos/genética , MicroRNAs/genética , Fenômenos Fisiológicos Oculares/genética , Análise Espaço-Temporal , Colículos Superiores/embriologia , Transcriptoma
9.
BMC Genomics ; 19(1): 480, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921224

RESUMO

Following publication of the original article [1], the authors reported that one of the authors' names is spelled incorrectly.

10.
BMC Genomics ; 19(1): 425, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859049

RESUMO

BACKGROUND: The PIWI/piRNA pathway is a conserved machinery important for germ cell development and fertility. This piRNA-guided molecular machinery is best known for repressing derepressed transposable elements (TE) during epigenomic reprogramming. The extent to which piRNAs are involved in modulating transcripts beyond TEs still need to be clarified, and it may be a stage-dependent event. We chose chicken germline as a study model because of the significantly lower TE complexity in the chicken genome compared to mammalian species. RESULTS: We generated high-confidence piRNA candidates in various stages across chicken germline development by 3'-end-methylation-enriched small RNA sequencing and in-house bioinformatics analysis. We observed a significant developmental stage-dependent loss of TE association and a shifting of the ping-pong cycle signatures. Moreover, the stage-dependent reciprocal abundance of LINE retrotransposons, CR1-C, and its associated piRNAs implicated the developmental stage-dependent role of piRNA machinery. The stage dependency of piRNA expression and its potential functions can be better addressed by analyzing the piRNA precursors/clusters. Interestingly, the new piRNA clusters identified from embryonic chicken testes revealed evolutionary conservation between chickens and mammals, which was previously thought to not exist. CONCLUSIONS: In this report, we provided an original chicken RNA resource and proposed an analytical methodology that can be used to investigate stage-dependent changes in piRNA compositions and their potential roles in TE regulation and beyond, and also revealed possible conserved functions of piRNAs in developing germ cells.


Assuntos
Galinhas/genética , RNA Interferente Pequeno/genética , Espermatozoides/citologia , Animais , Linhagem da Célula/genética , Elementos de DNA Transponíveis/genética , Masculino , Espermatozoides/metabolismo
11.
Development ; 141(12): 2402-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850856

RESUMO

The ability of adult stem cells to reside in a quiescent state is crucial for preventing premature exhaustion of the stem cell pool. However, the intrinsic epigenetic factors that regulate spermatogonial stem cell quiescence are largely unknown. Here, we investigate in mice how DNA methyltransferase 3-like (DNMT3L), an epigenetic regulator important for interpreting chromatin context and facilitating de novo DNA methylation, sustains the long-term male germ cell pool. We demonstrated that stem cell-enriched THY1(+) spermatogonial stem/progenitor cells (SPCs) constituted a DNMT3L-expressing population in postnatal testes. DNMT3L influenced the stability of promyelocytic leukemia zinc finger (PLZF), potentially by downregulating Cdk2/CDK2 expression, which sequestered CDK2-mediated PLZF degradation. Reduced PLZF in Dnmt3l KO THY1(+) cells released its antagonist, Sal-like protein 4A (SALL4A), which is associated with overactivated ERK and AKT signaling cascades. Furthermore, DNMT3L was required to suppress the cell proliferation-promoting factor SALL4B in THY1(+) SPCs and to prevent premature stem cell exhaustion. Our results indicate that DNMT3L is required to delicately balance the cycling and quiescence of SPCs. These findings reveal a novel role for DNMT3L in modulating postnatal SPC cell fate decisions.


Assuntos
Células-Tronco Adultas/metabolismo , DNA (Citosina-5-)-Metiltransferases/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Espermatogônias/metabolismo , Alelos , Animais , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
12.
BMC Genomics ; 16: 22, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25612663

RESUMO

BACKGROUND: Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. RESULTS: We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. CONCLUSION: We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study concerning the effects of signaling pathways and histone signatures on enhancers suggests that voltage-gated calcium signaling may be involved in early skin development. This work lays the foundation for studying the roles of these gene pathways and their genomic regulation during the establishment of skin regional specificity.


Assuntos
Galinhas/genética , Pele/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Diferenciação Celular/genética , Embrião de Galinha , Galinhas/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Plumas/metabolismo , Genoma , Histonas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
13.
J Virol ; 88(18): 10680-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24991018

RESUMO

UNLABELLED: Mammalian genomes are replete with retrotransposable elements, including endogenous retroviruses. DNA methyltransferase 3-like (DNMT3L) is an epigenetic regulator expressed in prospermatogonia, growing oocytes, and embryonic stem (ES) cells. Here, we demonstrate that DNMT3L enhances the interaction of repressive epigenetic modifiers, including histone deacetylase 1 (HDAC1), SET domain, bifurcated 1 (SETDB1), DNA methyltransferase 3A (DNMT3A), and tripartite motif-containing protein 28 (TRIM28; also known as TIF1ß and KAP1) in ES cells and orchestrates retroviral silencing activity with TRIM28 through mechanisms including, but not limited to, de novo DNA methylation. Ectopic expression of DNMT3L in somatic cells causes methylation-independent retroviral silencing activity by recruitment of the TRIM28/HDAC1/SETDB1/DNMT3A/DNMT3L complex to newly integrated Moloney murine leukemia virus (Mo-MuLV) proviral DNA. Concurrent with this recruitment, we also observed the accumulation of histone H3 lysine 9 trimethylation (H3K9me3) and heterochromatin protein 1 gamma (HP1γ), as well as reduced H3K9 and H3K27 acetylation at Mo-MuLV proviral sequences. Ectopic expression of DNMT3L in late-passage mouse embryonic fibroblasts (MEFs) recruited cytoplasmically localized HDAC1 to the nucleus. The formation of this epigenetic modifying complex requires interaction of DNMT3L with DNMT3A as well as with histone H3. In fetal testes at embryonic day 17.5, endogenous DNMT3L also enhanced the binding among TRIM28, DNMT3A, SETDB1, and HDAC1. We propose that DNMT3L may be involved in initiating a cascade of repressive epigenetic modifications by assisting in the preparation of a chromatin context that further attracts DNMT3A-DNMT3L binding and installs longer-term DNA methylation marks at newly integrated retroviruses. IMPORTANCE: Almost half of the mammalian genome is composed of endogenous retroviruses and other retrotransposable elements that threaten genomic integrity. These elements are usually subject to epigenetic silencing. We discovered that two epigenetic regulators that lack enzymatic activity, DNA methyltransferase 3-like (DNMT3L) and tripartite motif-containing protein 28 (TRIM28), collaborate with each other to impose retroviral silencing. In addition to modulating de novo DNA methylation, we found that by interacting with TRIM28, DNMT3L can attract various enzymes to form a DNMT3L-induced repressive complex to remove active marks and add repressive marks to histone proteins. Collectively, these results reveal a novel and pivotal function of DNMT3L in shaping the chromatin modifications necessary for retroviral and retrotransposon silencing.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Inativação Gênica , Leucemia Experimental/enzimologia , Leucemia Experimental/genética , Vírus da Leucemia Murina de Moloney/fisiologia , Proteínas Repressoras/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Humanos , Leucemia Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Leucemia Murina de Moloney/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteína 28 com Motivo Tripartido
14.
Reproduction ; 150(3): R77-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116003

RESUMO

Appropriate regulation of epigenome within cells is crucial for the determination of cell fate and contributes to the lifelong maintenance of tissue homeostasis. Epigenomic re-establishment during embryonic prospermatogonia development and fine-tune of the epigenetic landscape in postnatal spermatogonial stem cells (SSCs) are two key processes required for functional male germ cell formation. Repression of re-activated transposons and male germline-specific epigenome establishment occur in prospermatogonia, whereas modulations of the epigenetic landscape is important for SSC self-renewal and differentiation to maintain the stem cell pool and support long-term sperm production. Here, we describe the impact of epigenome-related regulators and small non-coding RNAs as well as the influence of epigenome modifications that result from extrinsic signaling for controlling the decision between self-renewal, differentiation and survival in mouse prospermatogonia and SSCs. This article provides a review of epigenome-related molecules involved in cell fate determination in male germ cells and discusses the intriguing questions that arise from these studies.


Assuntos
Células-Tronco Adultas/fisiologia , Epigênese Genética , Espermatogônias/fisiologia , Animais , Linhagem da Célula , Autorrenovação Celular , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Humanos , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Espermatogênese , Nicho de Células-Tronco
15.
Reproduction ; 150(4): 245-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159833

RESUMO

Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Células Híbridas , Técnicas de Transferência Nuclear , Animais , Blastocisto , Reprogramação Celular , Clonagem de Organismos , Elementos de DNA Transponíveis , Epigênese Genética , Feminino , Fibroblastos , Inativação Gênica , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 3 de Transcrição de Octâmero/biossíntese , Gravidez , Inibidores da Síntese de Proteínas/farmacologia
16.
J Biomed Sci ; 21: 21, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24624965

RESUMO

BACKGROUND: Stem cell-fate is highly regulated by stem cell niche, which is composed of a distinct microenvironment, including neighboring cells, signals and extracellular matrix. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells and are potentially applicable in wide variety of pathological conditions. However, the niche microenvironment for BM-MSCs maintenance has not been clearly characterized. Accumulating evidence indicated that heparan sulfate glycosaminoglycans (HS-GAGs) modulate the self-renewal and differentiation of BM-MSCs, while overexpression of heparanase (HPSE1) resulted in the change of histological profile of bone marrow. Here, we inhibited the enzymatic activity of cell-autonomous HPSE1 in BM-MSCs to clarify the physiological role of HPSE1 in BM-MSCs. RESULTS: Isolated mouse BM-MSCs express HPSE1 as indicated by the existence of its mRNA and protein, which includes latent form and enzymatically active HPSE1. During in vitro osteo-differentiations, although the expression levels of Hpse1 fluctuated, enzymatic inhibition did not affect osteogenic differentiation, which might due to increased expression level of matrix metalloproteinase 9 (Mmp9). However, cell proliferation and colony formation efficiency were decreased when HPSE1 was enzymatically inhibited. HPSE1 inhibition potentiated SDF-1/CXCR4 signaling axis and in turn augmented the migratory/anchoring behavior of BM-MSCs. We further demonstrated that inhibition of HPSE1 decreased the accumulation of acetylation marks on histone H4 lysine residues suggesting that HPSE1 also modulates the chromatin remodeling. CONCLUSIONS: Our findings indicated cell-autonomous HPSE1 modulates clonogenicity, proliferative potential and migration of BM-MSCs and suggested the HS-GAGs may contribute to the niche microenvironment of BM-MSCs.


Assuntos
Células da Medula Óssea/metabolismo , Glucuronidase/biossíntese , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco/genética , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células , Quimiocina CXCL12/biossíntese , Glucuronidase/antagonistas & inibidores , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Células-Tronco Multipotentes , Osteogênese/genética , Transdução de Sinais/genética
17.
Front Comput Neurosci ; 18: 1283974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313866

RESUMO

Introduction: The Swarm Intelligence Based (SIB) method has widely been applied to efficient optimization in many fields with discrete solution domains. E-commerce raises the importance of designing suitable selling strategies, including channel- and direct sales, and the mix of them, but researchers in this field seldom employ advanced metaheuristic techniques in their optimization problem due to the complexities caused by the high-dimensional problems and cross-dimensional constraints. Method: In this work, we introduce an extension of the SIB method that can simultaneously tackle these two challenges. To pursue faster computing, CPU parallelization techniques are employed for algorithm acceleration. Results: The performance of the SIB method is examined on the problems of designing selling schemes in different scales. It outperforms the Genetic Algorithm (GA) in terms of both the speed of convergence and the optimized capacity as measured using improvement multipliers.

18.
Biosystems ; 237: 105163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401640

RESUMO

In this paper, we explore the challenges associated with biomarker identification for diagnosis purpose in biomedical experiments, and propose a novel approach to handle the above challenging scenario via the generalization of the Dantzig selector. To improve the efficiency of the regularization method, we introduce a transformation from an inherent nonlinear programming due to its nonlinear link function into a linear programming framework under a reasonable assumption on the logistic probability range. We illustrate the use of our method on an experiment with binary response, showing superior performance on biomarker identification studies when compared to their conventional analysis. Our proposed method does not merely serve as a variable/biomarker selection tool, its ranking of variable importance provides valuable reference information for practitioners to reach informed decisions regarding the prioritization of factors for further investigations.


Assuntos
Biomarcadores , Probabilidade
19.
Stem Cells Transl Med ; 13(3): 293-308, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173411

RESUMO

Human adipose-derived stem cells (ASCs) have shown immense potential for regenerative medicine. Our previous work demonstrated that chitosan nano-deposited surfaces induce spheroid formation and differentiation of ASCs for treating sciatic nerve injuries. However, the underlying cell fate and differentiation mechanisms of ASC-derived spheroids remain unknown. Here, we investigate the epigenetic regulation and signaling coordination of these therapeutic spheroids. During spheroid formation, we observed significant increases in histone 3 trimethylation at lysine 4 (H3K4me3), lysine 9 (H3K9me3), and lysine 27 (H3K27me3), accompanied by increased histone deacetylase (HDAC) activities and decreased histone acetyltransferase activities. Additionally, HDAC5 translocated from the cytoplasm to the nucleus, along with increased nuclear HDAC5 activities. Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed the chitosan-induced ASC spheroids and discovered distinct cluster subpopulations, cell fate trajectories, differentiation traits, and signaling networks using the 10x Genomics platform, R studio/language, and the Ingenuity Pathway Analysis (IPA) tool. Specific subpopulations were identified within the spheroids that corresponded to a transient reprogramming state (Cluster 6) and the endpoint cell state (Cluster 3). H3K4me3 and H3K9me3 were discovered as key epigenetic regulators by IPA to initiate stem cell differentiation in Cluster 6 cells, and confirmed by qPCR and their respective histone methyltransferase inhibitors: SNDX-5613 (a KMT2A inhibitor for H3K4me3) and SUVi (an SUV39H1 inhibitor for H3K9me3). Moreover, H3K9me3 and HDAC5 were involved in regulating downstream signaling and neuronal markers during differentiation in Cluster 3 cells. These findings emphasize the critical role of epigenetic regulation, particularly H3K4me3, H3K9me3, and HDAC5, in shaping stem cell fate and directing lineage-specific differentiation.


Assuntos
Quitosana , Histonas , Humanos , Histonas/metabolismo , Epigênese Genética , Lisina/metabolismo , Diferenciação Celular , Células-Tronco , Histona Desacetilases
20.
J Biol Chem ; 287(18): 14389-401, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22396540

RESUMO

The establishment of an effective germ cell selection/enrichment platform from in vitro differentiating human embryonic stem cells (hESCs) is crucial for studying the molecular and signaling processes governing human germ cell specification and development. In this study, we developed a germ cell-enriching system that enables us to identify signaling factors involved in germ cell-fate induction from differentiating hESCs in vitro. First, we demonstrated that selection through an OCT4-EGFP reporter system can successfully increase the percentage of meiotic-competent, germ cell-like cells from spontaneously differentiating hESCs. Furthermore, we showed that the pluripotency associated surface marker, epithelial cell adhesion molecule (EpCAM), is also expressed in human fetal gonads and can be used as an effective selection marker for germ cell enrichment from differentiating hESCs. Combining OCT4 and EpCAM selection can further enrich the meiotic-competent germ cell-like cell population. Also, with the percentage of OCT4(+)/EpCAM(+) cells as readout, we demonstrated the synergistic effect of BMP4/pSMAD1/5/8 and WNT3A/ß-CATENIN in promoting hESCs toward the germline fate. Combining BMP4/WNT3A induction and OCT4/EpCAM selection can significantly increase the putative germ cell population with meiotic competency. Co-transplantation of these cells with dissociated mouse neonatal ovary cells into SCID mice resulted in a homogenous germ cell cluster formation in vivo. The stepwise platform established in this study provides a useful tool to elucidate the molecular mechanisms of human germ cell development, which has implications not only for human fertility research but regenerative medicine in general.


Assuntos
Antígenos de Neoplasias/biossíntese , Proteína Morfogenética Óssea 4/metabolismo , Moléculas de Adesão Celular/biossíntese , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células Germinativas/metabolismo , Meiose/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/metabolismo , Animais , Antígenos de Neoplasias/genética , Proteína Morfogenética Óssea 4/genética , Moléculas de Adesão Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Molécula de Adesão da Célula Epitelial , Feminino , Células Germinativas/citologia , Humanos , Camundongos , Camundongos SCID , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transplante Heterólogo , Proteína Wnt3A/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA