Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; : e2403438, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978442

RESUMO

The role of macromolecule-macromolecule and macromolecule-H2O interactions and the resulting perturbation of the H-bonded network of H2O in the liquid-liquid phase separation (LLPS) process of biopolymers are well-known. However, the potential of the hydrated state of supramolecular structures (non-covalent analogs of macromolecules) of synthetic molecules is not widely recognized for playing a similar role in the LLPS process. Herein, LLPS occurred during the co-assembly of hydrated supramolecular vesicles (bolaamphiphile, BA1) with a net positive charge (zeta potential, ζ = +60 ± 2 mV) and a dianionic chiral molecule (disodium l-[+]-tartrate) is reported. As inferred from cryo-transmission electron microscopy (TEM), the LLPS-formed droplets serve as the nucleation precursors, dictating the structure and properties of the co-assembly. The co-assembled structure formed by LLPS effectively integrates the counter anion's asymmetry, resulting in the formation of ultrathin free-standing, chiral 2D crystalline sheets. The significance of the hydrated state of supramolecular structures in influencing LLPS is unraveled through studies extended to a less hydrated supramolecular structure of a comparable system (BA2). The role of LLPS in modulating the hydrophobic interaction in water paves the way for the creation of advanced functional materials in an aqueous environment.

2.
Angew Chem Int Ed Engl ; 63(22): e202403900, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38459961

RESUMO

Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Teoria da Densidade Funcional , Interações Hidrofóbicas e Hidrofílicas , Aminas/química , Estrutura Molecular , Água/química
3.
Langmuir ; 32(47): 12442-12452, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27326898

RESUMO

A fundamental understanding of the effect of amphiphilic protein encapsulation on the nanostructure of the bicontinuous cubic phase is crucial to progressing biomedical and biological applications of these hybrid protein-lipid materials, including as drug delivery vehicles, as biosensors, biofuel cells and for in meso crystallization. The relationship between the lipid nanomaterial and the encapsulated protein, however, remains poorly understood. In this study, we investigated the effect of incorporating the five transmembrane and lipo-proteins which make up the ß-barrel assembly machinery from Gram-negative bacteria within a series of bicontinuous cubic phases. The transmembrane ß-barrel BamA caused an increase in lattice parameter of the cubic phase upon encapsulation. By contrast, the mainly hydrophilic lipo-proteins BamB-E caused the cubic phase lattice parameters to decrease, despite their large size relative to the diameter of the cubic phase water channels. Analysis of the primary amino acid sequence was used to rationalize this effect, based on specific interactions between aromatic amino acids within the proteins and the polar-apolar interface. Other factors that were found to have an effect were lateral bilayer pressure and rigidity within the lipid bilayer, water channel diameter, and size and structure of the lipo-proteins. The data presented suggest that hydrophilic bioactive molecules can be selectively encapsulated within the cubic phase by using a lipid anchor or aromatic amino acids, for drug delivery or biosensing applications.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Proteínas/química , Proteínas da Membrana Bacteriana Externa/química , Materiais Biomiméticos/química , Colesterol/química , Proteínas de Escherichia coli/química , Lipoproteínas/química , Modelos Moleculares , Nanocápsulas/química , Nanotecnologia , Conformação Proteica em Folha beta , Proteínas Recombinantes/química
4.
Eur Biophys J ; 44(8): 697-708, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26271933

RESUMO

Annexin V is of crucial importance for detection of the phosphatidylserine of apoptotic cell membranes. However, the manner in which different amounts of phosphatidylserine at the membrane surface at different stages of apoptosis contribute to binding of annexin V is unclear. We have used a quartz crystal microbalance combined with dissipative monitoring (QCM-D) and neutron reflectivity to characterize binding of human annexin V to supported bilayers of different phospholipid composition. We created model apoptotic bilayers of 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine and 1-palmitoyl-2-oleoyl-sn-glycerophosphoserine (POPS) in the ratios 19:1, 9:1, 6.7:1, 4:1, 3:1, and 2:1 (w/w) in the presence of 2.5 mM CaCl2. QCM-D data revealed that annexin V bound less to supported fluid lipid bilayers with higher POPS content (>25 % POPS). Neutron reflectivity was used to further characterize the detailed composition of lipid bilayers with membrane-bound annexin V. Analysis confirmed less annexin V binding with higher POPS content, that bound annexin V formed a discrete layer above the lipid bilayer with little effect on the overall structure of the membrane, and that the thickness and volume fraction of the annexin V layer varied with POPS content. From these results we show that the POPS content of the outer surface of lipid bilayers affects the structure of membrane-bound annexin V.


Assuntos
Anexina A5/química , Apoptose , Bicamadas Lipídicas/química , Sequência de Aminoácidos , Anexina A5/metabolismo , Sítios de Ligação , Humanos , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Ligação Proteica
5.
Phys Chem Chem Phys ; 17(28): 18443-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26106968

RESUMO

A novel surface-enhanced Raman scattering (SERS) sensing system which operates by the self-assembly of Ag nanoparticles (AgNPs) onto the nanocomposite of AgNPs and graphene oxide (AgNP-GO) in the presence of two complementary DNAs has been developed. In this system, AgNP-GO serves as a SERS-active substrate. The AgNPs with the modification of non-fluorescent 4-mercaptobenzoic acid (4-MBA) act as highly efficient Raman probes for DNA hybridization. When probe DNAs on AgNP-GO are complementary to target DNAs on AgNPs functionalized with 4-MBA, the DNA hybridization occurring directs the self-assembly of AgNPs onto AgNP-GO, leading to the creation of SERS hot spots. Due to the fact that partial 4-MBA molecules are located in the region of the hot spots, their SERS signals are greatly enhanced, indicating successful DNA hybridization. It is noteworthy that the size of AgNPs contributes significantly to the enhancement of SERS activity. The detection limit of the target DNAs at the pM level can be achieved through the self-assembly of large sized AgNPs onto AgNP-GO. More importantly, the AgNP-AgNP-GO system shows reproducible SERS signals in proportion to the logarithm of the target DNA concentrations spanning from 10(-6) to 10(-12) M and the excellent capability for multiplex DNA detection.

6.
Proc Natl Acad Sci U S A ; 107(3): 1047-52, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20080536

RESUMO

In this study, we describe a highly sensitive and reusable silicon nanowire field-effect transistor for the detection of protein-protein interactions. This reusable device was made possible by the reversible association of glutathione S-transferase-tagged calmodulin with a glutathione modified transistor. The calmodulin-modified transistor exhibited selective electrical responses to Ca2+ (> or = 1 microM) and purified cardiac troponin I (approximately 7 nM); the change in conductivity displayed a linear dependence on the concentration of troponin I in a range from 10 nM to 1 microM. These results are consistent with the previously reported concentration range in which the dissociation constant for the troponin I-calmodulin complex was determined. The minimum concentration of Ca2+ required to activate calmodulin was determined to be 1 microM. We have also successfully demonstrated that the N-type Ca2+ channels, expressed by cultured 293T cells, can be recognized specifically by the calmodulin-modified nanowire transistor. This sensitive nanowire transistor can serve as a high-throughput biosensor and can also substitute for immunoprecipitation methods used in the identification of interacting proteins.


Assuntos
Calmodulina/metabolismo , Nanofios , Proteínas/metabolismo , Ligação Proteica
7.
J Colloid Interface Sci ; 629(Pt B): 166-178, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152574

RESUMO

In this work, a novel acetamide-based deep eutectic solvent (DES) with Zn2+/ Li+ dual ions is designed and its physicochemical properties are tuned by adjusting the co-solvents (water and acetonitrile). Furthermore, the interplay between electrolyte components is investigated by spectroscopic analyses and molecular dynamics calculations. The addition of acetonitrile facilitates the formation of solid electrolyte interphase (SEI) with organic/inorganic components on the zinc anode. The presence of SEI coating enhances Coulombic efficiency and cycling stability by inhibiting the parasitic reactions and dendrite formation in the anode. The advantages of using dual cations in DES are demonstrated by assembling Zn ion batteries (ZIB) with the composite of δ-MnO2 and reduced graphene oxide as the cathode. The study of electrode kinetics in hybrid DES electrolytes suggests that Zn2+ and Li+ ions are responsible for battery-like and pseudocapacitive behavior of δ-MnO2 electrodes, respectively. With these merits, ZIB with the cutoff voltage of 2 V delivers a high cell capacity of 208 mAh g-1 at 0.1 Ag-1 and achieves 91% capacity retention after 1500 cycles at 2 Ag-1. More importantly, ZIB with hybrid DES is stably operated at the temperature of -20 °C, which is impossibly achieved by ZIB with conventional aqueous electrolytes.

8.
Nanomaterials (Basel) ; 13(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049350

RESUMO

Supercapacitors are candidates with the greatest potential for use in sustainable energy resources. Extensive research is being carried out to improve the performances of state-of-art supercapacitors to meet our increased energy demands because of huge technological innovations in various fields. The development of high-performing materials for supercapacitor components such as electrodes, electrolytes, current collectors, and separators is inevitable. To boost research in materials design and production toward supercapacitors, the up-to-date collection of recent advancements is necessary for the benefit of active researchers. This review summarizes the most recent developments of water-in-salt (WIS) and deep eutectic solvents (DES), which are considered significant electrolyte systems to advance the energy density of supercapacitors, with a focus on two-dimensional layered nanomaterials. It provides a comprehensive survey of 2D materials (graphene, MXenes, and transition-metal oxides/dichalcogenides/sulfides) employed in supercapacitors using WIS/DES electrolytes. The synthesis and characterization of various 2D materials along with their electrochemical performances in WIS and DES electrolyte systems are described. In addition, the challenges and opportunities for the next-generation supercapacitor devices are summarily discussed.

9.
Small ; 8(9): 1384-91, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22378619

RESUMO

To realize graphene-based electronics, bandgap opening of graphene has become one of the most important issues that urgently need to be addressed. Recent theoretical and experimental studies show that intentional doping of graphene with boron and nitrogen atoms is a promising route to open the bandgap, and the doped graphene might exhibit properties complementary to those of graphene and hexagonal boron nitride (h-BN), largely extending the applications of these materials in the areas of electronics and optics. This work demonstrates the conversion of graphene oxide nanosheets into boron carbonitride (BCN) nanosheets by reacting them with B(2) O(3) and ammonia at 900 to 1100 °C, by which the boron and nitrogen atoms are incorporated into the graphene lattice in randomly distributed BN nanodomains. The content of BN in BN-doped graphene nanosheets can be tuned by changing the reaction temperature, which in turn affects the optical bandgap of these nanosheets. Electrical measurements show that the BN-doped graphene nanosheet exhibits an ambipolar semiconductor behavior and the electrical bandgap is estimated to be ≈25.8 meV. This study provides a novel and simple route to synthesize BN-doped graphene nanosheets that may be useful for various optoelectronic applications.

10.
J Colloid Interface Sci ; 612: 76-87, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979412

RESUMO

Developing battery-supercapacitor hybrid devices (BSHs) is viewed as an efficient route to shorten the gap between supercapacitors and batteries. In this study, a composite hydrogel consisting of perylene tetracarboxylic diimide (PTCDI) and reduced graphene oxide (rGO) is tested as the anode for BSHs in the electrolyte of ammonium acetate (NH4Ac) with a record concentration of 32 molality (m). This water-in-salt electrolyte exhibits a wide electrochemical stability window of 2.13 V and high conductivity of 23.3 mS cm-1 even at -12 °C. Molecular dynamics calculations and spectroscopic measurements reveal that a favorable water-acetate interaction occurs in a high concentration NH4Ac electrolyte. On the other hand, the study of electrode kinetics in 32 m NH4Ac demonstrates a high capacitive contribution to charge storage in PTCDI-rGO although an electrode redox reaction involves reversible enolization of carbonyl groups in PTCDI. This result suggests fast NH4+-ion intercalation kinetics in charge-discharge processes. Furthermore, the electrode performance is improved by optimizing the loading amount of rGO in composites. The best-performing composite electrode delivers the maximum capacity of 165 mAh g-1 at 0.5 A g-1 and sustains a great capacity retention of 66% at 8 A g-1. Finally, an all-organic BSH device is tested in a broad temperature window from -20 to 50 °C and is well operated at 1.9 V regardless of operating temperatures. Due to the synergetic effect of splendid electrolyte properties and high anode capacities, BSH devices possess the maximum energy density of 12.9 Wh kg-1 at the power density of 827 W kg-1 and retain 74 % of the initial capacity after 3000 cycles at 1 A g-1. Our study paves a novel route towards designing inexpensive and environmentally friendly BSH devices with high performances.


Assuntos
Fontes de Energia Elétrica , Água , Eletrodos , Eletrólitos , Temperatura
11.
Nanomaterials (Basel) ; 12(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364631

RESUMO

Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.

12.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295664

RESUMO

Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.

13.
J Colloid Interface Sci ; 619: 123-131, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35378474

RESUMO

High-performance aqueous all-organic rechargeable batteries are promising candidates for cost-effective, safe, and environment-friendly next-generation energy storage devices. Herein, two organic copolymers with nanorod-like morphology (AN-TA, and AN-PA), composed of different tertiary amines, are synthesized as the cathode material for an aqueous proton battery. The individual copolymer electrodes possess the dominated diffusion-controlled electrode kinetics resulting from the proton insertion/de-insertion along with the surface-controlled processes in 2 M HCl and 2 M H2SO4. Among the two copolymers, AN-PA exhibits the maximum specific capacity of 145 mAh g-1 at 1 A g-1 and then, even at the higher current density of 10 A g-1, it possesses the capacity as 110 mAh g-1 in 2 M HCl. The assembled aqueous proton battery comprising of AN-PA as a cathode delivers the capacity of 80 mAh g-1 at 1 A g-1 in 2 M HCl. The maximum deliverable energy density of 33.9 Wh kg-1 is achieved at the power density of 423 W kg-1. Notably, our proton battery can well operate at the sub-zero temperature of -25 °C with a cell voltage of 1.1 V. More importantly, the device retains 84 % of the initial capacity after 1000 cycles at 2 A g-1 and exhibits the retention of specific capacity of about > 93% when compared to that of room temperature.

14.
Chem Commun (Camb) ; 58(16): 2746-2749, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35119447

RESUMO

We report an electrocatalyst, Co bases (metallic Co and Co(OH)2) with fluoride-incorporated CoO coating on the surface of (CoO-F/Co), was synthesized by the electro-deposition method. The porous network architecture of CoO-F/Co on the glassy carbon electrode exhibited an ultra-low overpotential of 15 mV, achieving the geometric current density of 10 mA cm-2 in 1.0 M KOH, which were comparable with the HER performance of numerous reported noble metal electrocatalysts. It is demonstrated that fluoride incorporation improved the electrodeposition particle size, electronic density, conductivity and hydrophilicity of CoO-F/Co the HER performance.

15.
ACS Appl Mater Interfaces ; 14(33): 37369-37379, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35951370

RESUMO

Nitric oxide (NO)-releasing nanoparticles are effective nanomedicines with diverse therapeutic advantages compared with small molecule-based NO donors. Here, we report a new class of furoxan-based NO-releasing nanoparticles using a simple, creative yet facile coassembly approach. This is the first time we demonstrated that the coassembled NO-releasing nanoparticles with poly(ethylene glycol)101-block-poly(propylene glycol)56-block-poly(ethylene glycol)101 (Pluronic F127) had potent antimicrobial efficacies against methicillin-resistant Staphylococcus aureus (MRSA) strains. Nanoparticles obtained from the coassembly of either 4-(1-(3-methylpentan-5-ol)oxyl)(3-phenylsulfonyl) furoxan (compound 1) or 4-methoxy(3-phenylsulfonyl) furoxan (compound 2) with Pluronic F127 exhibit 4-fold improved antimicrobial activities compared to their self-assembled counterparts without Pluronic F127. 5(6)-Carboxylfluorescein (CF) leakage experiments further reveal that both coassembled NO-releasing nanoparticles show stronger interactions with lipid bilayers than those self-assembled alone. Subsequently, their strong plasma membrane-damaging capabilities are confirmed under both high-resolution optical microscopy and scanning electron microscopy characterizations. This coassembly approach could be readily applied to other small molecule-based antimicrobials, providing new solutions and important insights to further antimicrobial recipe design.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Óxido Nítrico , Poloxâmero , Polietilenoglicóis
16.
Nanotechnology ; 22(13): 135503, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21343647

RESUMO

Using a silicon nanowire field-effect transistor (SiNW-FET) for biomolecule detections, we selected 3-(mercaptopropyl)trimethoxysilane (MPTMS), N-[6-(biotinamido)hexyl]-3(')-(2(')-pyridyldithio) propionamide (biotin-HPDP), and avidin, respectively, as the designated linker, receptor, and target molecules as a study model, where the biotin molecules were modified on the SiNW-FET to act as a receptor for avidin. We applied high-resolution scanning Kelvin probe force microscopy (KPFM) to detect the modified/bound biomolecules by measuring the induced change of the surface potential (ΔΦ(s)) on the SiNW-FET under ambient conditions. After biotin-immobilization and avidin-binding, the ΔΦ(s) on the SiNW-FET characterized by KPFM was demonstrated to correlate to the conductance change inside the SiNW-FET acquired in aqueous solution. The ΔΦ(s) values on the SiNW-FET caused by the same biotin-immobilization and avidin-binding were also measured from drain current versus gate voltage curves (I(d)-V(g)) in both aqueous condition and dried state. For comparison, we also study the ΔΦ(s) values on a Si wafer caused by the same biotin-immobilization and avidin-binding through KPFM and ζ potential measurements. This study has demonstrated that the surface potential measurement on a SiNW-FET by KPFM can be applied as a diagnostic tool that complements the electrical detection with a SiNW-FET sensor. Although the KPFM experiments were carried out under ambient conditions, the measured surface properties of a SiNW-FET are qualitatively valid compared with those obtained by other biosensory techniques performed in liquid environment.


Assuntos
Avidina/metabolismo , Técnicas Biossensoriais/instrumentação , Biotina/metabolismo , Nanofios/química , Silício/química , Transistores Eletrônicos , Animais , Avidina/química , Técnicas Biossensoriais/métodos , Biotina/química , Condutividade Elétrica , Desenho de Equipamento , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Nanofios/ultraestrutura , Ligação Proteica , Propriedades de Superfície
17.
Nanotechnology ; 21(36): 365604, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20705969

RESUMO

We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 degrees C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl(4) or ZrCl(4) is used.

18.
J Colloid Interface Sci ; 574: 300-311, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335481

RESUMO

NiSe nanoparticles are electrodeposited over a forest of carbon nanotubes (CNTs) to form an intertwined and porous network. The assynthesized composite (denoted as CNT@NiSe/SS) is used as a free-standing and multifunctional electrode for bothsupercapacitorsand overallwater splitting applications. For a supercapacitor application, CNT@NiSe/SS exhibits higher specific capacity and improved rate capability compared with individual NiSe and CNTs. A hybrid supercapacitor device consisting of battery-like CNT@NiSe/SS and EDLC-like graphene delivers a maximum energy density of 32.1 Wh kg-1 at a power density of 823 W kg-1 and has excellent stability after a floating test of 50 h. On the other hand, CNT@NiSe/SS also serves as a bifunctional electrocatalyst with high activity for overall water splitting. The CNT@NiSe/SS electrode displays excellent hydrogen and oxygen evolution reaction performance with the lowest overpotential of 174 mV at 10 mA cm-2 and 267 mV at 50 mA cm-2, respectively. The symmetrical two-electrode system requires an operating potential of 1.71 V to achieve a current density of 10 mA cm-2. Furthermore, this electrolyzer shows a negligible increment in potential after 24 hof continuouswater splitting. The outstanding performances of CNT@NiSe/SS can be attributed to the synergistic effect of NiSe and CNTs.

19.
Chem Commun (Camb) ; (18): 2164-6, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18438503

RESUMO

Soluble materials placed inside opened SWNTs can be contained using fullerenes to block the ends, thereby providing a way to remove the excess of external soluble material present in the initial product formed by low temperature filling of open-ended single wall carbon nanotubes; the C60-blocked filled SWNTs can then be used in applications in which leakage is undesirable.


Assuntos
Fulerenos/química , Nanotubos de Carbono/química , Compostos Organometálicos/química , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Temperatura
20.
J Mater Chem B ; 6(46): 7652-7661, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254887

RESUMO

New drug delivery materials targeting damaged ocular tissues are of particular interest. In this work, we have formulated annexin/phosphatidylserine/phytantriol and annexin/phosphatidylserine/monoolein cubosomes based on incorporation of 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (PS) lipid and annexin V (ANX) protein with phytantriol (Phy) and monoolein (MO) respectively. The incorporation of ANX is important because it can be used as a diagnostic tool for in vivo apoptosis detection due to its high affinity to phosphatidylserine in the presence of Ca2+. We have also prepared PS-Phy and PS-MO cubosomes without ANX as a comparison, and characterized them using dynamic light scattering, cryo-TEM images and small-angle X-ray scattering, showing that PS-Phy cubosomes have greater chemical stability, and that ANX-PS-Phy cubosomes have the potential for in vivo drug delivery. In addition, we have reconstituted an apoptotic biomimetic membrane on a surface to gain insights into cubosome-bilayer interactions using a quartz-crystal microbalance and neutron reflectometry. The neutron reflectivity data reveal that there is exchange of materials between the biomimetic apoptotic bilayer and ANX-PS-Phy cubosomes, with an accumulation of ANX between the membrane and cubosomes possibly being the reason for the reduced cytotoxicity of ANX-PS-Phy cubosomes. A rat model of laser-induced choroidal neovascularization showed that ANX-PS-Phy cubosomes specifically targeted apoptotic cells in vivo. We propose that ANX-PS-Phy cubosomes are a potential candidate for ocular drug delivery for eye diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA