RESUMO
Driven by a high-speed rotating electric field (E-field), molecular motors with polar groups may perform a unidirectional, repetitive, and GHz frequency rotation and thus offer potential applications as nanostirrers. To drive the unidirectional rotation of molecular motors, it is crucial to consider factors of internal charge flow, thermal noise, molecular flexibility, and so forth before selecting an appropriate frequency of a rotating E-field. Herein, we studied two surface-mounted dipolar rotors of a "caltrop-like" molecule and a "sandwich" molecule by using quantum-mechanical computations in combination with torque analyses. We find that the rotational trend as indicated by the magnitude and the direction of torque vectors can sensitively change with the lag angle (α) between the dipolar arm and the E-field. The atomic charges timely flow within the molecule as the E-field rotates, so the lag angle α must be kept in particular intervals to maintain the rotor's unidirectional rotation. The thermal effect can substantially slow down the rotation of the dipolar rotor in the E-field. The flexible dipolar arm shows a more rigid geometry in the E-field with higher rotation speed. Our work would be useful for designing E-driven molecular rotors and for guiding their practical applications in future.
RESUMO
Quantum entanglement and correlations in the spin-1 Heisenberg chain with single-ion anisotropy are investigated using the quantum renormalization group method. Negativity and quantum discord (QD) are calculated with various anisotropy parameters â³ and single-ion anisotropy parametersD. We focus on the relations between two abovementioned physical quantities and on transitions between the Néel, Haldane, and large-Dphases. It is found that both negativity and QD exhibit step-like patterns in different phases as the size of the system increases. Interestingly, the single-ion anisotropy parameterD, which can be modulated using nuclear electric resonance (2020Nature579205), plays an important role in tuning the quantum phase transition (QPT) of the system. Both the first partial derivative of the negativity and QD with respect toDor â³ exhibit nonanalytic behavior at the phase transition points, which corresponds directly to the divergence of the correlation length. The quantum correlation critical exponents derived from negativity and QD are equal, and are the reciprocal of the correlation length exponent at each critical point. This work extends the application of quantum entanglement and correlations as tools for depicting QPTs in spin-1 systems.
RESUMO
We predict three novel phases of the carbon nitride (CN) bilayer, denoted α-C2N2, ß-C2N2 and γ-C4N4, respectively. All of them consist of two CN sheets connected by C-C covalent bonds. The phonon dispersions reveal that all these phases are dynamically stable, because no imaginary frequency is present. The transition pathway between α-C2N2 and ß-C2N2 is investigated, which involves bond-breaking and bond-reforming between C and N. This conversion is difficult, since the activation energy barrier is 1.90 eV per unit cell, high enough to prevent the transformation at room temperature. Electronic structure calculations show that all three phases are semiconductors with indirect band gaps of 3.76/5.22 eV, 4.23/5.75 eV and 2.06/3.53 eV, respectively, by PBE/HSE calculation. The ß-C2N2 has the widest band gap among the three phases. All three bilayers can become metallic under tensile strain, and the indirect gap of γ-C4N4 can turn into a direct one. γ-C4N4 can become an anisotropic Dirac semimetal under uniaxial tensile strain. Anisotropic Dirac cones with high Fermi velocity of the order of 105 m/s appear under 12% strain. Our results suggest that the three two-dimensional materials have potential applications in electronics, semiconductors, optics and spintronics.
RESUMO
A new phase of nitrogen with octagon structure has been predicted in our previous study, which we referred to as octagon-nitrogene (ON). In this work, we make further investigations of its stability and electronic structures. The phonon dispersion has no imaginary phonon modes, which indicates that ON is dynamically stable. Using ab initio molecular dynamic simulations, this structure is found to be stable up to room temperature and possibly higher, and ripples that are similar to that of graphene are formed on the ON sheet. Based on the density functional theory calculation, we find that single layer ON is a two-dimension wide gap semiconductor with an indirect band gap of 4.7 eV. This gap can be decreased by stacking due to the interlayer interactions. Biaxial tensile strain and perpendicular electric field can greatly influence the band structure of ON, in which the gap decreases and eventually closes as the biaxial tensile strain or the perpendicular electric field increases. In other words, both biaxial tensile strain and a perpendicular electric field can drive the insulator-to-metal transition, and thus can be used to engineer the band gap of ON. From our results, we see that ON has potential applications in many fields, including electronics, semiconductors, optics and spintronics.