Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(44): e2301573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466259

RESUMO

Circularly polarized (CP) coherent light sources are of great potential for various advanced optical applications spanning displays/imaging to data processing/encryption and quantum communication. Here, the first demonstration of CP amplified spontaneous emission (ASE)/lasing from a free-standing and flexible membrane device is reported. The membrane device consists of perovskite nanocrystals (PNCs) and cholesteric liquid crystals (CLCs) layers sandwiched within a Fabry-Pérot (F-P) cavity architecture. The chiral liquid crystal cavity enables the generation of CP light from the device. The device is completely solution-processable and displays CP ASE with record dissymmetry factor (glum ) as high as 1.4, which is 3 orders of magnitude higher as compared with glum of CP luminescence of chiral ligand-capped colloidal PNCs. The device exhibits ultraflexibility as the ASE intensity remains unchanged after repeated 100 bending cycles and it is stable for more than 3 months with 80% of its original intensity. Furthermore, the ultraflexibility enables the generation of ASE from various objects of different geometric surfaces covered with the flexible perovskite membrane device. This work not only demonstrates the first CP ASE from a PNCs membrane with extremely high glum but also opens the door toward the fabrication of ultraflexible, extremely stable, and all solution-processable perovskite chiral laser devices.

2.
Front Chem ; 8: 574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850620

RESUMO

Perovskite nanocrystals have attracted worldwide attention due to their outstanding optical versatility, high photoluminescence quantum yields, and facile synthesis. In this review, we firstly revisit the synthetic methods for perovskite nanocrystals (PNCs), including hot injection, anion exchange, solvothermal reaction, etc. In the meantime, we discuss effects of the different synthetic methods on the properties of PNCs, including the crystal size, emission spectral feature, quantum yield, etc., followed by several optimizing strategies. Finally, lasing and display applications of these PNCs in combination with liquid crystal materials are discussed thoroughly. Outlooks on the challenges and opportunities of these nanocrystalline materials in terms of adjunct applications with liquid crystals have been presented at the end, which are highly promising for next-generation light emission applications.

3.
ACS Appl Mater Interfaces ; 10(27): 22883-22888, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29939008

RESUMO

We first verify the critical role of solvent evaporation on the resolution of inkjet printing. To confirm our hypothesis, we adjusted the evaporation rate gradient along the surface of adjacent droplets by controlling the drying microenvironment. Uneven solvent evaporation flux caused thermocapillary surface flow inward the space of micrometer-sized droplets and increase the air pressure, which prevented the neighboring droplets from coalescence. When reducing the droplet distance by the solvent evaporation-based method, a uniform profile could be obtained at the same time. This work brings us a step closer to resolving one of the critical bottlenecks to commercializing printed electronic goods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA