Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(9): 2450-2, 2009 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19950650

RESUMO

The normal Raman spectra and surface-enhanced Raman spectra (SERS) of largehead atractylodes rhizome decoction were tested and analyzed. The characteristic Raman bands of largehead atractylodes rhizome decoction were tentatively assigned. Six obvious Raman bands (396, 548, 617, 730, 955 and 1327 cm(-1)) were observed in the SERS of largehead atractylodes rhizome decoction. The absorption spectra of largehead atractylodes rhizome decoction and the mixture of silver colloids and largehead atractylodes rhizome decoction were tested. A new resonance absorption peak (999 nm) appeared in the long-wavelength region in UV-Vis absorption spectra of the mixture. The adsorption characteristics and possible enhancing mechanism of the largehead atractylodes rhizome decoction on silver colloid were speculated. The results showed that the surface-enhanced Raman spectroscopy might provide a new kind of precise, direct and fast detecting method for the largehead atractylodes rhizome decoction or other traditional Chinese medicine.


Assuntos
Atractylodes/química , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/química , Rizoma/química , Adsorção , Análise Espectral Raman
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(7): 1847-50, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19798955

RESUMO

The infrared spectra of decoction of herba ephedra and ramulus cinnarnomi and the mixed decoction of herba ephedra + ramulus cinnarnomi were tested. The change in the mixed decoction was discussed to study the relationship between herba ephedra and ramulus cinnarnomi after decoction. The results showed that some components of herba ephedra and ramulus cinnarnomi were retained in the mixed decoction of herba ephedra + ramulus cinnarnomi, such as 1 205 and 1 074 cm(-1), but some components that never appeared in the two component spectra increased, such as 1 394 and 678 cm(-1). New absorption peaks were generated in the mixed decoction of herba ephedra + ramulus cinnarnomi, such as 757 and 407 cm(-1). It can be showed that there are differences in the chemistry environment of the various chemical groups in the three decoctions introduced above, and with the variation in absorption peak position, possibly some new chemical compositions were created. Medical ingredients in the decoction are not simply the addition of herba ephedra and ramulus cinnarnomi based on the studies of infrared spectrum of the mixed decoction of herba ephedra + ramulus cinnarnomi, and the new notion of prescription spectroscopy was proposed.


Assuntos
Medicamentos de Ervas Chinesas/química , Ephedra sinica/química , Absorção , Química Farmacêutica , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(5): 1095-7, 2008 May.
Artigo em Chinês | MEDLINE | ID: mdl-18720808

RESUMO

A novel and compact near-infrared (NIR) Raman system was developed using 785 nm diode laser, volume-phase technology holographic system, and NIR intensified charge-coupled device (CCD). The Raman spectra and first derivative spectra of rhizoma dioscoreae were obtained. The Raman spectra of rhizoma dioscoreae showed three strong characteristic peaks at 477, 863 and 936 cm(-1), respectively. The major ingredients are protein, amino acid, starch, polysaccharides and so on, matching the known basic biochemical composition of rhizoma dioscoreae. In the first derivative spectra of rhizoma dioscoreae, the distinguishing characteristic peaks appeared at 467, 484, 870 and 943 cm(-1). Contrasted with rhizoma dioscoreae Raman spectra in the ranges of 600 to 800 cm(-1) and 1 000 to 1 400 cm(-1), the changes in rhizoma dioscoreae Raman first derivative spectra are represented more clearly than the rhizoma dioscoreae Raman spectra. So the rhizoma dioscoreae Raman first derivative spectra can be an accurate supplementary analysis method to the rhizoma dioscoreae Raman spectra.


Assuntos
Dioscorea/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Espectral Raman/métodos
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(12): 2835-8, 2008 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-19248494

RESUMO

The infrared spectra of decoction of herba ephedra and semen armeniacae amarum and the mixed decoction of herba ephedra + semen armeniacae amarum were tested. The change in the the mixed decoction was discussed to study the relationship between herba ephedra and semen armeniacae amarum after decoction. The results showed that some absorption peaks of herba ephedra and semen armeniacae amarum were retained in the mixed decoction of herba ephedra + semen armeniacae amarum, such as 1402 and 1076 cm(-1), but some absorption peaks that never appear in the two ingredient spectra increased such as 1394 and 682 cm(-1). New absorption peaks were generated in the mixed decoction of herba ephedra + semen armeniacae amarum, such as 688 and 1187 cm(-1). It can be showed that there were differences in the chemistry environment of the various chemical groups in the three decoctions introduced above, with the variation in absorption peak position, and the biochemical structure of the material changed, possibly with some new chemical compositions created. Medical ingredients in the mixed decoction of herba ephedra + semen armeniacae amarum were not simply the addition of herba ephedra and semen armeniacae amarum based on studies of infrared spectrum of decoction, and the new notion of prescription spectroscopy was proposed.


Assuntos
Asteraceae/química , Medicamentos de Ervas Chinesas/química , Ephedra/química , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA