Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2315584121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507453

RESUMO

The extractant-assisted transport of metal ions from aqueous to organic environments by liquid-liquid extraction has been widely used to separate and recover critical elements on an industrial scale. While current efforts focus on designing better extractants and optimizing process conditions, the mechanism that underlies ionic transport remains poorly understood. Here, we report a nonequilibrium process in the bulk aqueous phase that influences interfacial ion transport: the formation of metastable ion-extractant precipitates away from the liquid-liquid interface, separated from it by a depletion region without precipitates. Although the precipitate is soluble in the organic phase, the depletion region separates the two and ions are sequestered in a long-lived metastable state. Since precipitation removes extractants from the aqueous phase, even extractants that are sparingly soluble in water will continue to be withdrawn from the organic phase to feed the aqueous precipitation process. Solute concentrations in both phases and the aqueous pH influence the temporal evolution of the process and ionic partitioning between the precipitate and organic phase. Aqueous ion-extractant precipitation during liquid-liquid extraction provides a reaction path that can influence the extraction kinetics, which plays an important role in designing advanced processes to separate rare earths and other minerals.

2.
Nat Commun ; 15(1): 4274, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769114

RESUMO

Efficient, fast, and robust scintillators for ionizing radiation detection are crucial in various fields, including medical diagnostics, defense, and particle physics. However, traditional scintillator technologies face challenges in simultaneously achieving optimal performance and high-speed operation. Herein we introduce colloidal quantum shell heterostructures as X-ray and electron scintillators, combining efficiency, speed, and durability. Quantum shells exhibit light yields up to 70,000 photons MeV-1 at room temperature, enabled by their high multiexciton radiative efficiency thanks to long Auger-Meitner lifetimes (>10 ns). Radioluminescence is fast, with lifetimes of 2.5 ns and sub-100 ps rise times. Additionally, quantum shells do not exhibit afterglow and maintain stable scintillation even under high X-ray doses (>109 Gy). Furthermore, we showcase quantum shells for X-ray imaging achieving a spatial resolution as high as 28 line pairs per millimeter. Overall, efficient, fast, and durable scintillation make quantum shells appealing in applications ranging from ultrafast radiation detection to high-resolution imaging.

3.
Nat Commun ; 15(1): 5945, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009571

RESUMO

Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work, we have developed an unsupervised deep learning (DL) framework for automated classification of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system. We demonstrate how this method can be used to accelerate exploration of large datasets to identify samples of interest, and we apply this approach to directly correlate microscopic dynamics with macroscopic properties of a model system. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.

4.
Phytomedicine ; 129: 155613, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703659

RESUMO

BACKGROUND: Psychological stress is associated with various diseases including liver dysfunction, yet effective intervention strategies remain lacking due to the unrevealed pathogenesis mechanism. PURPOSE: This study aims to explore the relevance between BMAL1-controlled circadian rhythms and lipoxygenase 15 (ALOX15)-mediated phospholipids peroxidation in psychological stress-induced liver injury, and to investigate whether hepatocyte phospholipid peroxidation signaling is involved in the hepatoprotective effects of a Chinese patent medicine, Pien Tze Huang (PZH). METHODS: Restraint stress models were established to investigate the underlying molecular mechanisms of psychological stress-induced liver injury and the hepatoprotective effects of PZH. Redox lipidomics based on liquid chromatography-tandem mass spectrometry was applied for lipid profiling. RESULTS: The present study discovered that acute restraint stress could induce liver injury. Notably, lipidomic analysis confirmed that phospholipid peroxidation was accumulated in the livers of stressed mice. Additionally, the essential core circadian clock gene Brain and Muscle Arnt-like Protein-1 (Bmal1) was altered in stressed mice. Circadian disruption in mice, as well as BMAL1-overexpression in human HepaRG cells, also appeared to have a significant increase in phospholipid peroxidation, suggesting that stress-induced liver injury is closely related to circadian rhythm and phospholipid peroxidation. Subsequently, arachidonate 15-lipoxygenase (ALOX15), a critical enzyme that contributed to phospholipid peroxidation, was screened as a potential regulatory target of BMAL1. Mechanistically, BMAL1 promoted ALOX15 expression via direct binding to an E-box-like motif in the promoter. Finally, this study revealed that PZH treatment significantly relieved pathological symptoms of psychological stress-induced liver injury with a potential mechanism of alleviating ALOX15-mediated phospholipid peroxidation. CONCLUSION: Our findings illustrate the critical role of BMAL1-triggered phospholipid peroxidation in psychological stress-induced liver injury and provide new insight into treating psychological stress-associated liver diseases by TCM intervention.


Assuntos
Medicamentos de Ervas Chinesas , Hepatócitos , Peroxidação de Lipídeos , Fosfolipídeos , Estresse Psicológico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Masculino , Estresse Psicológico/tratamento farmacológico , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA