Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 188(2): 1111-1128, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865119

RESUMO

Chromosome segregation must be under strict regulation to maintain chromosome euploidy and stability. Cell Division Cycle 20 (CDC20) is an essential cell cycle regulator that promotes the metaphase-to-anaphase transition and functions in the spindle assembly checkpoint, a surveillance pathway that ensures the fidelity of chromosome segregation. Plant CDC20 genes are present in multiple copies, and whether CDC20s have the same functions in plants as in yeast and animals is unclear, given the potential for divergence or redundancy among the multiple copies. Here, we studied all three CDC20 genes in rice (Oryza sativa) and constructed two triple mutants by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated genome editing to explore their roles in development. Knocking out all three CDC20 genes led to total sterility but did not affect vegetative development. Loss of the three CDC20 proteins did not alter mitotic division but severely disrupted meiosis as a result of asynchronous and unequal chromosome segregation, chromosome lagging, and premature separation of chromatids. Immunofluorescence of tubulin revealed malformed meiotic spindles in microsporocytes of the triple mutants. Furthermore, cytokinesis of meiosis I was absent or abnormal, and cytokinesis II was completely prevented in all mutant microsporocytes; thus, no tetrads or pollen formed in either cdc20 triple mutant. Finally, the subcellular structures and functions of the tapetum were disturbed by the lack of CDC20 proteins. These findings demonstrate that the three rice CDC20s play redundant roles but are indispensable for faithful meiotic chromosome segregation and cytokinesis, which are required for the production of fertile microspores.


Assuntos
Divisão Celular/genética , Segregação de Cromossomos/genética , Citocinese/genética , Meiose/genética , Oryza/genética , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
Langmuir ; 38(20): 6425-6434, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35543367

RESUMO

Although numerous protocell models have been developed to explore the possible pathway of the origin of life on the early earth, few truly fulfill the roles of the DNA/RNA sequence and ATP molecules, which are keys to cell replication and evolution. The ATP-binding aptamer offers an opportunity to combine sequence and energy molecules. In this work, we choose the coacervate droplet as the protocell model and investigate the interaction of the DNA aptamer, poly(l-lysine)(PLL), and ATP under varying conditions. PLL and aptamers form solid precipitates, which spontaneously transform to coacervate droplets as ATP is introduced. The selective uptake and sequestration of exogenous molecules is achieved by the ATP-containing coacervates. As an electric field is applied to expel ATP, the portion of the droplet deficient in ATP becomes solid. The solid/liquid phase ratio is tunable by varying the electric field strength and excitation time. Together with the vacuolization process, a solid head with a soft mouth periodically opening and closing is created. Moreover, the composite coacervate droplet gradually grows as it is treated with an electric field and cannot recover to the original liquid phase after the power is turned off and replenished with ATP. Our work highlights that the proper integration of the DNA sequence, ATP, and energy input could be a powerful strategy for creating a protocell with certain living features.


Assuntos
Células Artificiais , Trifosfato de Adenosina , Células Artificiais/química , Eletricidade , Oligonucleotídeos
3.
Langmuir ; 36(7): 1709-1717, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32004005

RESUMO

During the evolution of life on earth, the emergence of lipid membrane-bounded compartments is one of the most enigmatic events. Endosymbiosis has been hypothesized as one of the solutions. In this work, using a coacervate droplet formed by single-stranded oligonucleotides (ss-oligo) and poly(l-lysine) (PLL) as the protocell model, we monitored the uptake of liposomes of different types and studied the dynamic behavior of the resulting composite droplet under the electric field. The coacervate droplet exhibits affinity for the liposomes of varying charges. However, the permeation of liposome is also controlled by electrostatic interactions. Dominated by electrostatic attraction, the positively charged liposome is retained inside the droplet as growing fibrous structures, while the negatively charged liposome is mainly coated on the droplet surface. Permeation and even distribution occur when the liposome and the droplet carry the same charges, or at least one of them is neutral. As an electric field is applied to trigger repetitive cycles of vacuolization in the ss-oligo/PLL droplet, the fibrous structure formed by the positively charged liposome is basically intact, while a new phase is generated together with uneven mass transport as the negatively charged liposome is internalized. Interestingly, the release of daughter droplets with similar components occurs on the droplet containing neutral liposomes. Our work not only provides a step toward creating protocells with hierarchical structures and biofunctions using a biogenetic material via simple mixing but also sheds light on the possible origin of the lipid structure inside a living organism.

4.
Langmuir ; 36(27): 8017-8026, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32584581

RESUMO

Construction of protocells with hierarchical structures and living functions is still a great challenge. Growing evidence demonstrates that the membraneless organelles, which facilitate many essential cellular processes, are formed by RNA, protein, and other biopolymers via liquid-liquid phase separation (LLPS). The formation of the protocell in the early days of Earth could follow the same principle. In this work, we develop a novel coacervate-based protocell containing membraneless subcompartments via spontaneous liquid-liquid phase separation by simply mixing single-stranded oligonucleotides (ss-oligo), quaternized dextran (Q-dextran), and poly(l-lysine) (PLL) together. The resulting biphasic droplet, with PLL/ss-oligo phase being the internal subcompartments and Q-dextran/ss-oligo phase as the surrounding medium, is capable of sequestering and partitioning biomolecules into distinct regions. When the droplet is exposed to salt or Dextranase, the surrounding Q-dextran/ss-oligo phase will be gradually dissociated, resulting in the chaotic movement and fusion of internal subcompartments. Besides, the external electric field at a lower strength can drive the biphasic droplet to undergo a deviated circulation concomitant with the fusion of localized subcompartments, while a high-strength electric field can polarize the whole droplet, resulting in the release of daughter droplets in a controllable manner. Our study highlights that liquid-liquid phase separation of biopolymers is a powerful strategy to construct hierarchically structured protocells resembling the morphology and functions of living cells and provides a step toward a better understanding of the transition mechanism from nonliving to living matter under prebiotic conditions.

5.
Langmuir ; 35(16): 5587-5593, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30942596

RESUMO

Construction of protocell models from prebiotically plausible components to mimic the basic features or functions of living cells is still a challenge. In this work, we prepare a hybrid protocell model by coating sodium oleate on the coacervate droplet constituted by poly(l-lysine) and oligonucleotide and investigate the transport of different molecules under electric field. Results show that sodium oleate forms a layered viscoelastic membrane on the droplet surface, which is selectively permeable to small, polar molecules, such as oligolysine. As the droplet is stimulated at 10 V cm-1, the oleate membrane slips along the direction of electric field while maintaining its integrity. Most of the molecules are still excluded under such conditions. As repetitive cycles of vacuolization occur at 20 V cm-1, all molecules are internalized and sequestrated in the droplet through their specific pathways except enzyme, which anchors in the oleate membrane and is immune to electric field. Cascade enzymatic reactions are then carried out, and the product generated from the membrane exhibits a time-dependent concentration gradient across the droplet. Our work makes a step toward the nonequilibrium functionalization of synthetic protocells capable of biomimetic operations.


Assuntos
Células Artificiais/química , Ácidos Graxos/química , Ácido Oleico/química , Tamanho da Partícula , Propriedades de Superfície
7.
ACS Macro Lett ; 11(9): 1107-1111, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36006377

RESUMO

The membraneless organelles (MLOs) play a key role in the cell, yet it is unclear what controls the morphology and dynamics of MLOs in crowded cell medium. Using a biphasic coacervate droplet as a model of MLO, we online monitored the liquid-liquid phase separation process in crowded medium provided by poly(ethylene oxide) (PEO) or dextran. In PEO solution, which has an affinity with the inner phase, the spherical droplets evolve into clusters, networks, and completely phase inverted spheres in sequence with increasing PEO concentration, while in dextran solution, which has an affinity with the outer phase, the coacervates maintain the morphology but vary in phase ratio. Flower-like and even Janus structures are formed in the mixed PEO/dextran medium. Our work demonstrates that MLOs could be controlled solely by the crowded cell medium.


Assuntos
Dextranos , Óxido de Etileno
8.
Huan Jing Ke Xue ; 43(9): 4697-4705, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096610

RESUMO

Microplastics are widely distributed in the biogeochemical cycle driven by microbes. Their surface is enriched with unique microbial communities, called plastispheres. Various redox environments that exist widely in the natural environment can affect the microbial composition in the plastisphere and the fate of the microplastics. To explore the microbial community composition and construction mechanism on the surface of microplastics in typical redox environments, three microplastics, PHA (polyhydroxyalkanoates), PLA (polylactic acid), and PVC (polyvinyl chloride), were placed in five specific redox environments:aerobic, nitrate reduction, iron oxide reduction, sulfate reduction, and methane production. The culture experiment simulated the microcosm, which was inoculum by sludge. The results showed that microplastic factors affected 18.94% and 46.67% of the microbial communities on the plastisphere in taxonomy and phylogeny, respectively. Redox factors affected 31.04% and 90.00% of the microbial communities on the plastisphere in taxonomy and phylogeny, respectively. Compared with that in sludge, the microbial community richness and diversity were reduced on the three microplastics. The most apparent reduction was found on the plastisphere of more degradable PHA. At the same time, microbial communities on the refractory PLA and PVC surfaces remained similar. Anaerocolumna (26.44%) was the dominant genus on the surface of PHA microplastics, whereas microbes related to the redox reaction were less enriched. Clostridium_sensu_stricto_7 (15.49% and 11.87%) was the dominant strain on PLA and PVC microplastics, and the microbes related to the redox reaction were significantly enriched. Thus, characteristic microbes involved in the redox reaction will be enriched in the surface of refractory microplastics, and microplastics may affect the rate of biogeochemical cycling.


Assuntos
Microbiota , Microplásticos , Oxirredução , Plásticos , Poliésteres , Cloreto de Polivinila , Esgotos
9.
Chem Commun (Camb) ; 56(80): 12041-12044, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902524

RESUMO

The construction of a protocell with dynamic hierarchical structures via spontaneous phase separation sheds light on the mechanisms of life processes. Taking advantage of the transition from the liquid to solid phase, we built composite droplets with PLL/oligo/oligocomp solid particles randomly distributed inside a PLL/oligo liquid coacervate. The circulation and vacuolization under an electric field drive the particles into a fibrous structure and even clusters. A PLL/oligo/oligocomp solid phase can also form on the interface of the PLL/oligo coacervate, turning the droplet into a vesicular structure.

10.
ACS Appl Mater Interfaces ; 12(48): 53921-53931, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33202136

RESUMO

Platinum telluride (PtTe2) has garnered significant research enthusiasm owing to its unique characteristics. However, large-scale synthesis of PtTe2 toward potential photoelectric and photovoltaic application has not been explored yet. Herein, we report direct tellurization of Pt nanofilms to synthesize large-area PtTe2 films and the influence of growth conditions on the morphology of PtTe2. Electrical analysis reveals that the as-grown PtTe2 films exhibit typical semimetallic behavior, which is in agreement with the results of first-principles density functional theory (DFT) simulation. Moreover, the combination of multilayered PtTe2 and Si results in the formation of a PtTe2/Si heterojunction, exhibiting an obvious rectifying effect. Moreover, the PtTe2-based photodetector displays a broadband photoresponse to incident radiation in the range of 200-1650 nm, with the maximum photoresponse at a wavelength of ∼980 nm. The R and D* of the PtTe2-based photodetector are found to be 0.406 A W-1 and 3.62 × 1012 Jones, respectively. In addition, the external quantum efficiency is as high as 32.1%. On the other hand, the response time of τrise and τfall is estimated to be 7.51 and 36.7 µs, respectively. Finally, an image sensor composed of a 8 × 8 PtTe2-based photodetector array was fabricated, which can record five near-infrared (NIR) images under 980 nm with a satisfying resolution. The result demonstrates that the as-prepared PtTe2 material will be useful for application in NIR optoelectronics.

11.
J Neurol Sci ; 383: 79-86, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246630

RESUMO

OBJECTIVE: To investigate the changes in the expression of repulsive guidance molecule b (RGMb) in brain tissue of rats with ischemic cerebral infarction and determine its relationship with axonal regeneration, synapse remodeling and magnetic resonance imaging (MRI) parameters with magnetic resonance diffusion tensor imaging as the dynamic continuous monitoring method in vivo, so as to explore the pathophysiological mechanism of the occurrence, development and prognosis of cerebral infarction. METHODS: Ninety Sprague-Dawley (SD) rats were randomly divided into six groups, namely control group, middle cerebral artery occlusion (MCAO) 12-h group, MCAO 24-h group, MCAO 48-h group, MCAO 7-day group and MCAO 10-day group, each of 15 animals. Rats were examined by head MRI at corresponding time points, followed by measurement of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values. Subsequently, brain tissues were taken to detect the expression of RGMb, axonal regeneration and synapse remodeling. RESULTS: After infarction, ADC and FA values of the infarcted core area were lower in rats of each group compared to those in rats of normal group (P<0.05), which was lowest at 12h. The positive expressions of RGMb and synaptophysin were continuously increased from the 12th hour after operation, which reached a peak at 48h; while axonas was gradually reduced after operation in each group, which revealed the most obvious damage in the MCAO 24-h group. The protein expression of RGMb was negatively correlated with MRI parameters and axon growth. CONCLUSION: After supratentorial cerebral infarction, the expressions of RGMb and synaptophysin were up-regulated in rats, neurofilament protein (NF-200) expression was decreased, and MRI parameters (ADC and FA values) were reduced, indicating that RGMb protein may be involved in the regeneration and remodeling of axons and synapses, and exert an important role in pathophysiological processes such as nerve regeneration disturbance and neuron apoptosis after cerebral ischemia injury. In vivo MRI can be a noninvasive technique to monitor the areas of cerebral infarction and the recovery of neurological function.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Axônios/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Progressão da Doença , Proteínas Ligadas por GPI , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/metabolismo , Sinapses/patologia , Fatores de Tempo
12.
Mol Plant ; 8(7): 1069-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25684654

RESUMO

Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known according to the ABC model of floral development, little information is available on how these genes affect germ cell initiation. By using the Affymetrix GeneChip Rice Genome Array to assess 51 279 transcripts, we established a dynamic gene expression profile (GEP) of the early developmental process of rice (Oryza sativa) stamen. Systematic analysis of the GEP data revealed novel expression patterns of some developmentally important genes including meiosis-, tapetum-, and phytohormone-related genes. Following the finding that a substantial amount of nuclear genes encoding photosynthetic proteins are expressed at the low levels in early rice stamen, through the ChIP-seq analysis we found that a C-class MADS box protein, OsMADS58, binds many nuclear-encoded genes participated in photosystem and light reactions and the expression levels of most of them are increased when expression of OsMADS58 is downregulated in the osmads58 mutant. Furthermore, more pro-chloroplasts are observed and increased signals of reactive oxygen species are detected in the osmads58 mutant anthers. These findings implicate a novel link between stamen identity determination and hypoxia status establishment.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Perfilação da Expressão Gênica , Oryza/crescimento & desenvolvimento , Oryza/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Núcleo Celular/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Flores/citologia , Flores/metabolismo , Genômica , Oryza/citologia , Oryza/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo
13.
Chem Commun (Camb) ; 50(57): 7625-7, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24895688

RESUMO

Molybdenum carbide nanotubes (Mo2C-NTs) were synthesized and showed remarkable catalytic activity for regeneration of an organic sulfide redox shuttle. The dye-sensitized solar cells (DSCs) using Mo2C-NTs as the counter electrode (CE) showed a high power conversion efficiency of 6.22%, which is much higher than the DSCs using a conventional Pt CE (3.91%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA