Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
BMC Cancer ; 24(1): 121, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267903

RESUMO

BACKGROUND: Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are the two most common immune checkpoints targeted in triple-negative breast cancer (BC). Refining patient selection for immunotherapy is non-trivial and finding an appropriate digital pathology framework for spatial analysis of theranostic biomarkers for PD-1/PD-L1 inhibitors remains an unmet clinical need. METHODS: We describe a novel computer-assisted tool for three-dimensional (3D) imaging of PD-L1 expression in immunofluorescence-stained and optically cleared BC specimens (n = 20). The proposed 3D framework appeared to be feasible and showed a high overall agreement with traditional, clinical-grade two-dimensional (2D) staining techniques. Additionally, the results obtained for automated immune cell detection and analysis of PD-L1 expression were satisfactory. RESULTS: The spatial distribution of PD-L1 expression was heterogeneous across various BC tissue layers in the 3D space. Notably, there were six cases (30%) wherein PD-L1 expression levels along different layers crossed the 1% threshold for admitting patients to PD-1/PD-L1 inhibitors. The average PD-L1 expression in 3D space was different from that of traditional immunohistochemistry (IHC) in eight cases (40%). Pending further standardization and optimization, we expect that our technology will become a valuable addition for assessing PD-L1 expression in patients with BC. CONCLUSION: Via a single round of immunofluorescence imaging, our approach may provide a considerable improvement in patient stratification for cancer immunotherapy as compared with standard techniques.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Humanos , Feminino , Imageamento Tridimensional , Inibidores de Checkpoint Imunológico , Ligantes , Receptor de Morte Celular Programada 1 , Corantes , Computadores
2.
Biotechnol Bioeng ; 121(1): 341-354, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37749931

RESUMO

Recombinant adeno-associated virus (rAAV) is among the most commonly used in vivo gene delivery vehicles and has seen a number of successes in clinical application. Current manufacturing processes of rAAV employ multiple plasmid transfection or rely on virus infection and face challenges in scale-up. A synthetic biology approach was taken to generate stable cell lines with integrated genetic modules, which produced rAAV upon induction albeit at a low productivity. To identify potential factors that restrained the productivity, we systematically characterized virus production kinetics through targeted quantitative proteomics and various physical assays of viral components. We demonstrated that reducing the excessive expression of gene of interest by its conditional expression greatly increased the productivity of these synthetic cell lines. Further enhancement was gained by optimizing induction profiles and alleviating proteasomal degradation of viral capsid protein by the addition of proteasome inhibitors. Altogether, these enhancements brought the productivity close to traditional multiple plasmid transfection. The rAAV produced had comparable full particle contents as those produced by conventional transient plasmid transfection. The present work exemplified the versatility of our synthetic biology-based viral vector production platform and its potential for plasmid- and virus-free rAAV manufacturing.


Assuntos
Células Artificiais , Dependovirus , Dependovirus/genética , Linhagem Celular , Transfecção , Vetores Genéticos
3.
Appl Microbiol Biotechnol ; 108(1): 385, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896252

RESUMO

Recombinant adeno-associated virus (rAAV) is a major gene delivery vehicle. We have constructed a stable rAAV producer cell line by integrating essential rAAV genome, viral and helper genes into the genome of HEK293 cell under the control of inducible promoters. Upon induction, the cell line produces transducing rAAV. To gain insight into enhancing rAAV productivity and vector quality, we performed a comparative transcriptomic and proteomic analysis of our synthetic cell line GX2 and two wild-type AAV (wtAAV) production systems, one by virus co-infection and the other by multi-plasmid transfection. The three systems had different kinetics in viral component synthesis but generated comparable copies of AAV genomes; however, the capsid titer of GX2 was an order of magnitude lower compared to those two wtAAV systems, indicating that its capsid production may be insufficient. The genome packaging efficiency was also lower in GX2 despite it produced higher levels of Rep52 proteins than either wtAAV systems, suggesting that Rep52 protein expression may not limit genome packaging. In the two wtAAV systems, VP were the most abundant AAV proteins and their levels continued to increase, while GX2 had high level of wasteful cargo gene expression. Furthermore, upregulated inflammation, innate immune responses, and MAPK signaling, as well as downregulated mitochondrial functions, were commonly observed in either rAAV or wtAAV systems. Overall, this comparative multi-omics study provided rich insights into host cell and viral factors that are potential targets for genetic and process intervention to enhance the productivity of synthetic rAAV producer cell lines. KEY POINTS: • wtAAV infection was more efficient in producing full viral particles than the synthetic cell GX2. • Capsid protein synthesis, genome replication, and packaging may limit rAAV production in GX2. • wtAAV infection and rAAV production in GX2 elicited similar host cell responses.


Assuntos
Dependovirus , Proteômica , Dependovirus/genética , Humanos , Células HEK293 , Transcriptoma , Vetores Genéticos/genética , Cinética , Genoma Viral , Perfilação da Expressão Gênica , Proteoma
4.
J Cell Physiol ; 238(1): 137-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350183

RESUMO

Our previous study demonstrated that ultrasound is able to promote differentiation on neural stem cells (NSCs), and dual-frequency ultrasound promotes this effect due to enhanced acoustic cavitation compared with single-frequency ultrasound. However, the underlying biological reasons have not been well disclosed. The purpose of this study was to investigate the underlying bioeffects, mechanisms and signaling pathways of dual-frequency ultrasound on NSC differentiation. The morphology, neurite outgrowth, and differentiation percentages were investigated under various dual-frequency simulation parameters with exposure periods varying from 5 to 15 min. Morphological observations identified that dual-frequency ultrasound stimulation promoted ultrasound dose-dependent neurite outgrowth. In particular, cells exposed for 10 min/2 days showed optimal neurite outgrowth and neuron differentiation percentages. In addition, live cell calcium images showed that dual-frequency ultrasound enhanced the internal calcium content of the cells, and calcium ions entering cells from the extracellular environment could be observed. Dual frequency ultrasound exposure enhanced extracellular calcium influx and upregulated extracellular signal-regulated kinases 1/2 (ERK1/2) expression. Observations from immunostaining and protein expression examinations also identified that dual-frequency ultrasound promoted brain-derived neurotrophic factor (BDNF) secretion from astrocytes derived from NSCs. In summary, evidence supports that dual-frequency ultrasound effectively enhances functional neuron differentiation via calcium channel regulation via the downstream ERK1/2 pathway and promotes BDNF secretion to serve as feedback to cascade neuron differentiation. The results may provide an alternative for cell-based therapy in brain injury.


Assuntos
Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Células-Tronco Neurais , Ondas Ultrassônicas , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Células Cultivadas , Células-Tronco Neurais/citologia , Neurônios/citologia , Transdução de Sinais
5.
Lab Invest ; 103(9): 100195, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302529

RESUMO

Novel therapeutics have significantly improved the survival and quality of life of patients with malignancies in this century. Versatile precision diagnostic data were used to formulate personalized therapeutic strategies for patients. However, the cost of extensive information depends on the consumption of the specimen, raising the challenges of effective specimen utilization, particularly in small biopsies. In this study, we proposed a tissue-processing cascaded protocol that obtains 3-dimensional (3D) protein expression spatial distribution and mutation analysis from an identical specimen. In order to reuse the thick section tissue evaluated after the 3D pathology technique, we designed a novel high-flatness agarose-embedded method that could improve tissue utilization rate by 1.52 fold, whereas it reduced the tissue-processing time by 80% compared with the traditional paraffin-embedding method. In animal studies, we demonstrated that the protocol would not affect the results of DNA mutation analysis. Furthermore, we explored the utility of this approach in non-small cell lung cancer because it is a compelling application for this innovation. We used 35 cases including 7 cases of biopsy specimens of non-small cell lung cancer to simulate future clinical application. The cascaded protocol consumed 150-µm thickness of formalin-fixed, paraffin-embedded specimens, providing 3D histologic and immunohistochemical information approximately 38 times that of the current paraffin-embedding protocol, and 3 rounds of DNA mutation analysis, offering both essential guidance for routine diagnostic evaluation and advanced information for precision medicine. Our designed integrated workflow provides an alternative way for pathological examination and paves the way for multidimensional tumor tissue assessment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Qualidade de Vida , Mutação , DNA , Inclusão em Parafina/métodos , Formaldeído
6.
Anal Chem ; 95(42): 15486-15496, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37820297

RESUMO

The process of peak picking and quality assessment for multiple reaction monitoring (MRM) data demands significant human effort, especially for signals with low abundance and high interference. Although multiple peak-picking software packages are available, they often fail to detect peaks with low quality and do not report cases with low confidence. Furthermore, visual examination of all chromatograms is still necessary to identify uncertain or erroneous cases. This study introduces HeapMS, a web service that uses artificial intelligence to assist with peak picking and the quality assessment of MRM chromatograms. HeapMS applies a rule-based filter to remove chromatograms with low interference and high-confidence peak boundaries detected by Skyline. Additionally, it transforms two histograms (representing light and heavy peptides) into a single encoded heatmap and performs a two-step evaluation (quality detection and peak picking) using image convolutional neural networks. HeapMS offers three categories of peak picking: uncertain peak picking that requires manual inspection, deletion peak picking that requires removal or manual re-examination, and automatic peak picking. HeapMS acquires the chromatogram and peak-picking boundaries directly from Skyline output. The output results are imported back into Skyline for further manual inspection, facilitating integration with Skyline. HeapMS offers the benefit of detecting chromatograms that should be deleted or require human inspection. Based on defined categories, it can significantly reduce human workload and provide consistent results. Furthermore, by using heatmaps instead of histograms, HeapMS can adapt to future updates in image recognition models. The HeapMS is available at: https://github.com/ccllabe/HeapMS.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Proteômica , Redes Neurais de Computação , Software
7.
Cancer Cell Int ; 23(1): 154, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537630

RESUMO

INTRODUCTION: Gliomas, a type of brain neoplasm, are prevalent and often fatal. Molecular diagnostics have improved understanding, but treatment options are limited. This study investigates the role of INTS9 in processing small nuclear RNA (snRNA), which is crucial to generating mature messenger RNA (mRNA). We aim to employ advanced bioinformatics analyses with large-scale databases and conduct functional experiments to elucidate its potential role in glioma therapeutics. MATERIALS AND METHODS: We collected genomic, proteomic, and Whole-Exon-Sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) for bioinformatic analyses. Then, we validated INTS9 protein expression through immunohistochemistry and assessed its correlation with P53 and KI67 protein expression. Gene Set Enrichment Analysis (GSEA) was performed to identify altered signaling pathways, and functional experiments were conducted on three cell lines treated with siINTS9. Then, we also investigate the impacts of tumor heterogeneity on INTS9 expression by integrating single-cell sequencing, 12-cell state prediction, and CIBERSORT analyses. Finally, we also observed longitudinal changes in INTS9 using the Glioma Longitudinal Analysis (GLASS) dataset. RESULTS: Our findings showed increased INTS9 levels in tumor tissue compared to non-neoplastic components, correlating with high tumor grading and proliferation index. TP53 mutation was the most notable factor associated with upregulated INTS9, along with other potential contributors, such as combined chromosome 7 gain/10 loss, TERT promoter mutation, and increased Tumor Mutational Burden (TMB). In GSEA analyses, we also linked INTS9 with enhanced cell proliferation and inflammation signaling. Downregulating INTS9 impacted cellular proliferation and cell cycle regulation during the function validation. In the context of the 12 cell states, INTS9 correlated with tumor-stem and tumor-proliferative-stem cells. CIBERSORT analyses revealed increased INTS9 associated with increased macrophage M0 and M2 but depletion of monocytes. Longitudinally, we also noticed that the INTS9 expression declined during recurrence in IDH wildtype. CONCLUSION: This study assessed the role of INTS9 protein in glioma development and its potential as a therapeutic target. Results indicated elevated INTS9 levels were linked to increased proliferation capacity, higher tumor grading, and poorer prognosis, potentially resulting from TP53 mutations. This research highlights the potential of INTS9 as a promising target for glioma treatment.

8.
Cancer Cell Int ; 23(1): 62, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029364

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common and lethal brain tumor. The current treatment is surgical removal combined with radiotherapy and chemotherapy, Temozolomide (TMZ). However, tumors tend to develop TMZ resistance which leads to therapeutic failure. Ancient ubiquitous protein 1 (AUP1) is a protein associated with lipid metabolism, which is widely expressed on the surface of ER and Lipid droplets, involved in the degradation of misfolded proteins through autophagy. It has recently been described as a prognostic marker in renal tumors. Here, we aim to use sophisticated bioinformatics and experimental validation to characterize the AUP1's role in glioma. MATERIAL AND METHODS: We collected the mRNA, proteomics, and Whole-Exon-Sequencing from The Cancer Genome Atlas (TCGA) for bioinformatics analyses. The analyses included the expression difference, Kaplan-Meier-survival, COX-survival, and correlation to the clinical factors (tumor mutation burden, microsatellite instability, and driven mutant genes). Next, we validated the AUP1 protein expression using immunohistochemical staining on the 78 clinical cases and correlated them with P53 and KI67. Then, we applied GSEA analyses to identify the altered signalings and set functional experiments (including Western Blot, qPCR, BrdU, migration, cell-cycle, and RNAseq) on cell lines when supplemented with small interfering RNA targeting the AUP1 gene (siAUP1) for further validation. We integrated the single-cell sequencing and CIBERSORT analyses at the Chinese Glioma Genome Atlas (CGGA) and Glioma Longitudinal AnalySiS (GLASS) dataset to rationale the role of AUP1 in glioma. RESULTS: Firstly, the AUP1 is a prognostic marker, increased in the tumor component, and correlated with tumor grade in both transcriptomes and protein levels. Secondly, we found higher AUP1 associated with TP53 status, Tumor mutation burden, and increased proliferation. In the function validation, downregulated AUP1 expression merely impacted the U87MG cells' proliferation instead of altering the lipophagy activity. From the single-cell sequencing and CIBERSORT analyses at CGGA and GLASS data, we understood the AUP1 expression was affected by the tumor proliferation, stromal, and inflammation compositions, particularly the myeloid and T cells. In the longitudinal data, the AUP1 significantly dropped in the recurrent IDH wildtype astrocytoma, which might result from increased AUP1-cold components, including oligodendrocytes, endothelial cells, and pericytes. CONCLUSION: According to the literature, AUP1 regulates lipophagy by stabilizing the ubiquitination of lipid droplets. However, we found no direct link between AUP1 suppression and altered autophagy activity in the functional validation. Instead, we noticed AUP1 expression associated with tumor proliferation and inflammatory status, contributed by myeloid cells and T cells. In addition, the TP53 mutations seem to play an important role here and initiate inflamed microenvironments. At the same time, EGFR amplification and Chromosome 7 gain combined 10 loss are associated with increased tumor growth related to AUP1 levels. This study taught us that AUP1 is a poorer predictive biomarker associated with tumor proliferation and could report inflamed status, potentially impacting the clinical application.

9.
J Transl Med ; 20(1): 131, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296339

RESUMO

Immune checkpoint blockade therapy has revolutionized non-small cell lung cancer treatment. However, not all patients respond to this therapy. Assessing the tumor expression of immune checkpoint molecules, including programmed death-ligand 1 (PD-L1), is the current standard in predicting treatment response. However, the correlation between PD-L1 expression and anti-PD-1/PD-L1 treatment response is not perfect. This is partly caused by tumor heterogeneity and the common practice of assessing PD-L1 expression based on limited biopsy material. To overcome this problem, we developed a novel method that can make formalin-fixed, paraffin-embedded tissue translucent, allowing three-dimensional (3D) imaging. Our protocol can process tissues up to 150 µm in thickness, allowing anti-PD-L1 staining of the entire tissue and producing high resolution 3D images. Compared to a traditional 4 µm section, our 3D image provides 30 times more coverage of the specimen, assessing PD-L1 expression of approximately 10 times more cells. We further developed a computer-assisted PD-L1 quantitation method to analyze these images, and we found marked variation of PD-L1 expression in 3D. In 5 of 33 needle-biopsy-sized specimens (15.2%), the PD-L1 tumor proportion score (TPS) varied by greater than 10% at different depth levels. In 14 cases (42.4%), the TPS at different depth levels fell into different categories (< 1%, 1-49%, or ≥ 50%), which can potentially influence treatment decisions. Importantly, our technology permits recovery of the processed tissue for subsequent analysis, including histology examination, immunohistochemistry, and mutation analysis. In conclusion, our novel method has the potential to increase the accuracy of tumor PD-L1 expression assessment and enable precise deployment of cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Computadores , Humanos , Neoplasias Pulmonares/patologia , Tecnologia
10.
Opt Express ; 30(7): 10818-10832, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473040

RESUMO

We demonstrate the scanning and control of the carrier-envelope phases (CEPs) of two adjacent spectral components totally spanning more than one-octave in the short-wave infrared (SWIR) wavelength region by operating two individual acousto-optic programmable dispersive filters (AOPDFs) applied to each of the two spectral components. The total CEP shift of the synthesized sub-cycle pulse composed of the two spectral components is controlled with simultaneous scans of the two CEPs. The resultant error of the controlled CEP was 642 mrad, so that this technique is useful for searching zero CEP of the synthesized pulse with the maximum field amplitude. In addition, we conduct a closed feedback loop to compensate for the CEP fluctuation by using the two AOPDFs together. As a result, we succeed to reduce the rms error of the CEP from 399 mrad to 237 mrad.

11.
J Integr Neurosci ; 21(3): 75, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35633156

RESUMO

BACKGROUND: Sleep disturbances and aversive cold stress (CS) are cardiovascular risk factors. This study investigates how homeostatic control autonomic baroreflex influences the hemodynamic perturbations evoked by paradoxical sleep deprivation (PSD) and CS. METHODS: Conscious adult male rats were randomly divided into four groups (Sham/CON [control], Sham/PSD, sinoaortic denervation [SAD]/CON, and SAD/PSD). Spectral analysis and SAD were employed to evaluate the effects of a 72-hr PSD with 10-min CS on blood pressure variability and heart rate variability (BPV and HRV) at total power (TP) and three frequency power densities, very-low-frequency (VLF), low frequency (LF), and high frequency (HF). RESULTS: Key findings showed: (I) Compared with the control sham surgery (Sham/CON), in the natural baseline (PreCS) trial, SAD surgery (SAD/CON) causes high systolic blood pressure (SBP), heart rate (HR), increases LFBPV (low-frequency power of BPV), LF/HFHRV (the ratio LF/HF of HRV), and TPBPV (the total power of BPV), but decreases HFHRV (high-frequency power of HRV) and VLFHRV (very-low-frequency power of HRV) than the Sham/CON does. In the CS trial, SAD/CON increases the CS-induced pressor, increases the CS-elicited spectral density, LF/HFHRV, but decreases HFBPV than the Sham/CON does. (II) Compared with SAD/CON and Sham/PSD (PSD under sham surgery), in both PreCS and CS trials, SAD/PSD (PSD under SAD) causes high SBP and HR than both SAD/CON and Sham/PSD their SBP and HR. In PreCS, SAD-PSD also changes the spectral density, including increasing Sham-PSD's LFBPV, LF/HFHRV, VLFBPV, and TPBPV but decreasing Sham-PSD's VLFHRV and TPHRV. However, in CS, SAD-PSD changes the CS-elicited spectral density, including increasing Sham-PSD's VLFBPV, LF/HFHRV, and TPHRV but decreasing Sham-PSD's HFBPV and LFBPV. CONCLUSION: The results suggest baroreflex combined with other reflex pathways, such as inhibitory renorenal reflex, modulates the vascular and cardiorespiratory responses to PSD under PreCS and subsequent CS trials.


Assuntos
Resposta ao Choque Frio , Sono REM , Animais , Denervação , Frequência Cardíaca/fisiologia , Hemodinâmica/fisiologia , Masculino , Ratos
12.
Chin J Physiol ; 65(4): 171-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36073565

RESUMO

Spectral analysis of heart rate (HR) and blood pressure (BP) variabilities (BPV and HRV) is widely available and utilized in understanding the dynamic cardiovascular autonomic regulation in a variety of pathophysiological conditions. In conscious cold-stressed (CS) rats, we examined the effect of a 7-day regimen administration of losartan, a selective nonpeptide angiotensin AT1 receptor blockade, on BPV and HRV at three frequency components: very-low frequency (VLF), low frequency (LF), and high frequency (HF). Key findings in changes of systolic BP (SBP), HR, and spectral power densities for cardiopulmonary oscillations (HF), sympathetic oscillations (LF), cardiovascular myogenic oscillations (VLF), and overall autonomic activity total power (TP) showed: (I) In the resting PreCS trial, compared with the saline, losartan increased HFBPV, TPHRV, all three HRV frequency powers, and the occurrence of the dicrotic notch (DN). However, it decreased SBP, HR, and the LFBPV frequency power. (II) In the CS trial, losartan significantly decreased SBP and DN occurrence and HR and LF/HFHRV but significantly increased HFHRV, TPBPV, and all three BPV frequency powers. In addition, similar to the saline, losartan showed positively correlated LFBPV and VLFBPV. Conversely, losartan converted the original inverse correlations between LFHRV and LFBPV of CS to a positive correlation. (III) Compared with saline in PreCS and CS trials, losartan detached the corresponding sympathetic oscillations between LFBPV and LFHRV. The overall result indicates that endogenous angiotensin II, through stimulation of the AT1 receptor, augments sympathetic tone but attenuates sympathetic oscillations in rats, particularly under the stressful cooling impacts.


Assuntos
Resposta ao Choque Frio , Losartan , Animais , Pressão Sanguínea , Coração , Frequência Cardíaca , Losartan/farmacologia , Ratos
13.
Appl Environ Microbiol ; 87(13): e0044221, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893118

RESUMO

Enterococcus faecalis, a member of the commensal flora in the human gastrointestinal tract, has become a threatening nosocomial pathogen because it has developed resistance to many known antibiotics. More concerningly, resistance gene-carrying E. faecalis cells may transfer antibiotic resistance to resistance-free E. faecalis cells through their unique quorum sensing-mediated plasmid transfer system. Therefore, we investigated the role of probiotic bacteria in the transfer frequency of the antibiotic resistance plasmid pCF10 in E. faecalis populations to mitigate the spread of antibiotic resistance. Bacillus subtilis subsp. natto is a probiotic strain isolated from Japanese fermented soybean foods, and its culture fluid potently inhibited pCF10 transfer by suppressing peptide pheromone activity from chromosomally encoded CF10 (cCF10) without inhibiting E. faecalis growth. The inhibitory effect was attributed to at least one 30- to 50-kDa extracellular protease present in B. subtilis subsp. natto. Nattokinase of B. subtilis subsp. natto was involved in the inhibition of pCF10 transfer and cleaved cCF10 (LVTLVFV) into LVTL plus VFV fragments. Moreover, the cleavage product LVTL (L peptide) interfered with the conjugative transfer of pCF10. In addition to cCF10, faecalis-cAM373 and gordonii-cAM373, which are mating inducers of vancomycin-resistant E. faecalis, were also cleaved by nattokinase, indicating that B. subtilis subsp. natto can likely interfere with vancomycin resistance transfer in E. faecalis. Our work shows the feasibility of applying fermentation products of B. subtilis subsp. natto and L peptide to mitigate E. faecalis antibiotic resistance transfer. IMPORTANCE Enterococcus faecalis is considered a leading cause of hospital-acquired infections. Treatment of these infections has become a major challenge for clinicians because some E. faecalis strains are resistant to multiple clinically used antibiotics. Moreover, antibiotic resistance genes can undergo efficient intra- and interspecies transfer via E. faecalis peptide pheromone-mediated plasmid transfer systems. Therefore, this study provided the first experimental demonstration that probiotics are a feasible approach for interfering with conjugative plasmid transfer between E. faecalis strains to stop the transfer of antibiotic resistance. We found that the extracellular protease(s) of Bacillus subtilis subsp. natto cleaved peptide pheromones without affecting the growth of E. faecalis, thereby reducing the frequency of conjugative plasmid transfer. In addition, a specific cleaved pheromone fragment interfered with conjugative plasmid transfer. These findings provide a potential probiotic-based method for interfering with the transfer of antibiotic resistance between E. faecalis strains.


Assuntos
Bacillus , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Probióticos/farmacologia , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/metabolismo , Fermentação , Transferência Genética Horizontal , Oligopeptídeos/genética , Peptídeo Hidrolases/metabolismo , Feromônios/genética , Feromônios/metabolismo , Plasmídeos , Transdução de Sinais , Bacillus subtilis
14.
Chin J Physiol ; 63(2): 53-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341230

RESUMO

Water-induced pressor response appears mediated through the activation of transient receptor potential channel TRPV4 on hepatic portal circulation in animals. We sought to elucidate the mechanism of portal vein signaling in this response. Forty-five rats were divided into four groups: control rats without water ingestion (WI), control rats with WI, portal vein denervation rats with WI (PVDWI), and TRPV4 antagonist-treated rats with WI (anti-TRPV4WI). Cardiovascular responses were monitored throughout the experiments. Data analysis was performed using descriptive methods and spectral and cross-spectral analysis of blood pressure variability (BPV) and heart rate variability (HRV). Key results showed that at baseline (PreCS) before cold stress trial (CS), WI elicited robust pressor and tachycardia responses accompanied by spectral power changes, in particular, increases of low-frequency BPV (LFBPV) and very-LFBPV (VLFBPV), but decrease of very-low-frequency HRV. PVDWI, likewise, elicited pressor and tachycardia responses accompanied by increases of high-frequency BPV, high-frequency HRV, LFBPV, low-frequency HRV, and VLFBPV. When compared with WI at PreCS, WI at CS elicited pressor and tachycardia responses accompanied by increases of high-frequency BPV, LFBPV, and VLFBPV, whereas in WI, the CS-evoked pressor response and the accompanied LFBPV and VLFBPV increases were all tended augmented by PVDWI. When compared with WI and PVDWI at both PreCS and CS, however, anti-TRPV4WI attenuated their pressor responses and attenuated their increased LFBPV, VLFBPV, and very-low-frequency HRV. The results indicate that the portal vein innervation is critical for a buffering mechanism in splanchnic sympathetic activation and water-induced pressor response.


Assuntos
Resposta ao Choque Frio , Veia Porta , Animais , Pressão Sanguínea , Frequência Cardíaca , Ratos , Canais de Cátion TRPV , Água
15.
Hu Li Za Zhi ; 67(1): 55-65, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-31960397

RESUMO

BACKGROUND: Early antiretroviral therapy (ART) is recommended as an intervention for HIV by the World Health Organization. However, the association between the CD4 count at ART initiation and the risk of adverse drug reactions (ADRs) remains unclear. PURPOSE: This study aimed to describe the trends related to symptom number and intensity among patients newly diagnosed with HIV in three different CD4-count-based groups and then to investigate the ADR trends for these three groups at different points in time. METHODS: This multi-center cohort study recruited newly diagnosed HIV/AIDS patients who had not previously used ART from AIDS-designated hospitals in Taiwan from March 2015 to December 2016. Study measures were assessed at the time of case enrollment (T0) and during the 1st month (T1), 4-6th month (T2), and 7-9th month (T3) of ART treatment. Patients were stratified into three groups according to initial CD4 count: ≤ 350 cells/mm3, >350-500 cells/mm3 and >500 cells/mm3. Repeated measures ANOVA and generalized estimating equations were used to estimate the relationships between the level of initial CD4 count and ADRs. RESULTS: A total of 207 patients completed the study. Mean symptom numbers and symptom intensities decreased significantly over time in all three groups (p < .01). The largest mean reduction in both symptom number and intensity was achieved by the CD4 count >500 cells/mm3 group. Overall, at least one ADR was reported by 85.7% of the participants at the first month of ART use, and the incidence of ADR had decreased by an average of 22% at the 7-9th month assessment (p < .001). ARDs decreased significantly over time in the CD4 count > 500 cells/mm3 group, with the degrees of ADRs in systematic side effect most significantly decreased in this group (p = .03). CONCLUSIONS / IMPLICATIONS FOR PRACTICE: Number and intensity of symptoms significantly improved over time in all three CD4 count groups. The percentage of systematic side effects was most reduced in the CD4 count > 500 cells/mm3 group. The results of this study may be referenced by HIV care providers when discussing with patients the initiation of ART and the potential risks of experiencing ADRs.


Assuntos
Antirretrovirais/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Contagem de Linfócito CD4/estatística & dados numéricos , Estudos de Coortes , Infecções por HIV/diagnóstico , Humanos , Taiwan/epidemiologia , Fatores de Tempo
16.
Opt Lett ; 44(13): 3190-3193, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259918

RESUMO

We developed a high-speed two-photon optical ribbon imaging system, which combines galvo-mirrors for an arbitrary curve scan on a lateral plane and a tunable acoustic gradient-index lens for a 100 kHz-1 MHz axial scan. The system provides micrometer/millisecond spatiotemporal resolutions, which enable continuous readout of functional dynamics from small and densely packed neurons in a living adult Drosophila brain. Compared to sparse sampling techniques, the ribbon imaging modality avoids motion artifacts. Combined with a Drosophila anatomical connectome database, which is the most complete among all model animals, this technique paves the way toward establishing whole-brain functional connectome.

17.
Chin J Physiol ; 62(2): 86-92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31243179

RESUMO

Cold stress-elicited hemodynamic perturbations (CEHP) its underlying mechanisms still not clear. We examined the difference of two effector arms of sympathetic outflows, the sympathoadrenal system, and postganglionic sympathetic neurons, their role in CEHP genesis by using two sympatholytic agents, fusaric acid (FA, dopamine-ß-hydroxylase inhibitor) and guanethidine (GUA, norepinephrine-depleting drug). Adult male Sprague-Dawley rats were divided into three groups (n = 6, each), an intraperitoneal injection of control vehicle saline or FA or GUA and then all rats were subjected to a 10-min CS trial. Systolic blood pressure (SBP), heart rate (HR), dicrotic notch (Dn), power spectrum of blood pressure variability and HR variability (BPV, HRV), and coherence spectrum at very-low, low, and high frequency regions (VLF: 0.02-0.2 Hz, LF: 0.2-0.6 Hz, and HF: 0.6-3.0 Hz) were monitored using telemetry throughout the experiment course. We observed both FA and GUA attenuated SBP and HR and the spectral powers of BPV at VLF, LF, and HF in both baseline (PreCS) and cold stimuli (CS) conditions, but apparently, FA exerted stronger effects than GUA did. Both FA and GUA generally attenuated the responses of CS-induced pressor and tachycardia and the CS-increased VLFBPV, LFBPV, and HFBPV, but different effects between FA and GUA, when compared with control vehicle under CS. FA reduced the CS-reduced VLFHRV and the CS-increased LFBPV and HFBPV more than GUA did. We further observed in both PreCS and CS, GUA but not FA increased HFHRV; FA reduced but apparently, GUA increased the occurrence of Dn. Finally, we observed FA weakened, but GUA strengthened the coherence between BPV and HRV at both LF and HF regions. Taken together, the different effects between FA and GUA on CEHP indicate a role of the sympathoadrenal mechanism in response to CS.


Assuntos
Hemodinâmica , Animais , Pressão Sanguínea , Frequência Cardíaca , Masculino , Ratos , Ratos Sprague-Dawley , Simpatolíticos
18.
Stress ; 21(6): 520-527, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29939104

RESUMO

Prolonged paradoxical sleep deprivation (PSD) and cold stress (CS) are known to cause sympathoexcitation and increase the risk of cardiovascular disease. The present study examined the effect of PSD with CS on hemodynamic perturbations by investigating blood pressure and heart rate variability (BPV and HRV) in conscious rats. Adult male Sprague-Dawley rats were divided into three groups (n = 10, each): normal sleep (NS), PSD of 72 h, and recovery sleep of 7 days after PSD. When compared with NS, PSD increased systolic blood pressure in all three conditions: before CS (PreCS), CS, and after CS (PostCS). The PSD also increased heart rate in both PreCS and PostCS. Furthermore, spectral power changes were observed throughout the experiment. The PSD increased very-low-frequency BPV in PreCS, decreased very-low-frequency HRV in CS, and increased low-frequency BPV in all three conditions. The PSD increased low-frequency HRV in PreCS, increased high-frequency BPV in both CS and PostCS, and also increased high-frequency HRV in both PreCS and CS but decreased that in PostCS. On the other hand, when compared with PSD, recovery sleep has reversed most cardiovascular changes in PSD toward the NS level. However, when compared with NS, spectral powers of very-low-frequency BPV in the recovery phase showed a lower level. These results showed that in the resting condition, PSD might evoke sympathoexcitation with a tendency to increase both very-low-frequency BPV and very-low-frequency HRV, as the intensified myogenic oscillations. However, in the CS condition, PSD evoked the sympathoexcitation yet might attenuate such myogenic oscillations.

19.
Am J Physiol Regul Integr Comp Physiol ; 313(5): R601-R607, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855180

RESUMO

Blood lactate increases during incremental exercise at high-intensity workloads, and limited exercise capacity is a characteristic of obese animals. This study examined whether blood lactate changes in response to incremental exercise is disrupted in obese animals. Muscular and hepatic proteins that are critical in lactate metabolism were also investigated. Rats were randomized to either standard chow (control) or high-fat diet (HFD) groups. All animals underwent an incremental treadmill test after 14 wk of diet intervention. Blood lactate levels were measured before and after the treadmill test. Activities of mitochondrial oxidative phosphorylation and glycolysis were examined in muscle tissues. Proteins in the liver and skeletal muscles that participate in the turnover of blood lactate were determined by Western blot. Running time in the incremental treadmill test decreased in the HFD group, and blood lactate accumulated faster in these animals than in the control group. Animals with HFD had a decreased level of hepatic monocarboxylate transporter 2, the protein responsible for blood lactate uptake in the liver. Skeletal muscles of animals with HFD showed greater glycolytic activity and decreased content of lactate dehydrogenase B, which converts lactate to pyruvate. We conclude that blood lactate accumulated faster during incremental exercise in obese animals and was associated with their decreased exercise performance. Changes in the metabolic pattern of muscles and changes of liver and muscle proteins associated with lactate utilization likely contribute to the abnormal response of blood lactate to incremental exercise in obese animals.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Ácido Láctico/sangue , Fígado/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Obesidade/sangue , Esforço Físico , Adaptação Fisiológica , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/fisiopatologia , Obesidade/etiologia , Obesidade/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo
20.
Can J Physiol Pharmacol ; 95(7): 803-810, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28278384

RESUMO

Rapid immersion of a rat's limbs into 4 °C water, a model of cold stress, can elicit hemodynamic perturbations (CEHP). We previously reported that CEHP is highly relevant to sympathetic activation and nitric oxide production. This study identifies the role of nitric oxide in CEHP. Conscious rats were pretreated with the nitric oxide synthase inhibitor L-NAME (NG-nitro-l-arginine methyl ester) alone or following the removal of sympathetic influences using hexamethonium or guanethidine. Rats were then subjected to a 10 min cold-stress trial. Hemodynamic indices were telemetrically monitored throughout the experiment. The analyses included measurements of systolic blood pressure; heart rate; dicrotic notch; short-term cardiovascular oscillations and coherence between blood pressure variability and heart rate variability in regions of very low frequency (0.02-0.2 Hz), low frequency (0.2-0.6 Hz), and high frequency (0.6-3.0 Hz). We observed different profiles of hemodynamic reaction between hexamethonium and guanethidine superimposed on L-NAME, suggesting an essential role for a functional adrenal medulla release of epinephrine under cold stress. These results indicate that endogenous nitric oxide plays an important role in the inhibition of sympathetic activation and cardiovascular oscillations in CEHP.


Assuntos
Resposta ao Choque Frio/fisiologia , Hemodinâmica , Óxido Nítrico/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA