Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nano Lett ; 24(2): 632-639, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175932

RESUMO

Electrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported. We show that the gate voltages isothermally toggle the dominant magnetic sublattice of the compensated ferrimagnet FeTb at room temperature, showing high reversibility and good endurance under ambient conditions. By implementing this strategy in FeTb/Pt/Co spin valves with giant magnetoresistance (GMR), we demonstrate that the distinct high and low resistance states can be selectively controlled by the gate voltages with assisting magnetic fields. Our results provide a promising route to use ferrimagnets for developing electric-field-controlled, low-power memory and logic devices.

2.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980287

RESUMO

Hybrid halide perovskites are good candidates for a range of functional materials such as optical electronic and photovoltaic devices due to their tunable band gaps, long carrier diffusion lengths, and solution processability. However, the instability in moisture/air, the toxicity of lead, and rigorous reaction setup or complex postprocessing have long been the bottlenecks for practical application. Herein, we present a simultaneous configurational entropy design at A-sites, B-sites, and X-sites in the typical (CHA)2PbBr4 two-dimensional (2D) hybrid perovskite. Our results demonstrate that the high-entropy effect favors the stabilization of the hybrid perovskite phase and facilitates a simple crystallization process without precise control of the cooling rate to prepare regular crystals. Moreover, high-entropy 2D perovskite crystals exhibit tunable energy band gaps, broadband emission, and a long carrier lifetime. Meanwhile, the high-entropy composition almost maintains the initial crystal structure in deionized water for 18 h while the original (CHA)2PbBr4 crystal mostly decomposes, suggesting obviously improved humidity stability. This work offers a facile approach to synthesize humidity-stable hybrid perovskites under mild conditions, accelerating relevant preparation of optoelectronics and light-emitting devices and facilitating the ultimate commercialization of halide perovskite.

3.
Nat Mater ; 21(9): 1074-1080, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35668148

RESUMO

Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm-3 with an efficiency of 78% at an electric field of 6.35 MV cm-1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.

4.
Lasers Med Sci ; 38(1): 33, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598586

RESUMO

Femtosecond laser is a promising surface treatment tool for zirconia implant. In this study, the fatigue behavior of zirconia specimens with microgrooved surfaces formed by femtosecond laser is reported. One hundred sixty CAD/CAM zirconia bars (20 mm × 4 mm × 1.4 mm) were evenly divided into four groups with different surface: as sintered; sandblasted with 110 µm Al2O3; femtosecond laser produced microgrooves having 50 µm width, 30 µm depth, and 100 µm pitch; microgrooves having 30 µm width, 20 µm depth, and 60 µm pitch. The femtosecond laser formed micro/nanostructured microgrooves with precise size on zirconia surfaces. XRD analysis indicated that microgrooved surface showed no obvious tetragonal-to-monoclinic phase transformation. The fatigue strength of sandblasted specimens (728 MPa) was significantly higher than that of as sintered specimens (570 MPa). However, the fatigue strength of specimens with microgrooved surface decreased to about 360-380 MPa. The results suggest femtosecond laser is an effective technique to regulate the surface microtopography of zirconia, while further investigations are needed to improve its fatigue behavior.


Assuntos
Lasers , Zircônio , Propriedades de Superfície , Microscopia Eletrônica de Varredura , Teste de Materiais , Cerâmica , Materiais Dentários
5.
Small ; 18(29): e2202507, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35754171

RESUMO

Piezoelectric nanomaterials open new avenues in driving green catalysis processes (e.g., H2 evolution from water) through harvesting mechanical energy, but their catalytic efficiency is still limited. The predicted enormous piezoelectricity for 2D SnSe, together with its high charge mobility and excellent flexibility, renders it an ideal candidate for stimulating piezocatalysis redox reactions. In this work, few-layer piezoelectric SnSe nanosheets (NSs) are utilized for mechanically induced H2 evolution from water. The finite elemental method simulation demonstrates an unprecedent maximal piezoelectric potential of 44.1 V for a single SnSe NS under a pressure of 100 MPa. A record-breaking piezocurrent density of 0.3 mA cm-2 is obtained for SnSe NSs-based electrode under ultrasonic excitation (100 W, 45 kHz), which is about three orders of magnitude greater than that of reported piezocatalysts. Moreover, an exceptional H2 production rate of 948.4 µmol g-1 h-1 is achieved over the SnSe NSs without any cocatalyst, far exceeding most of the reported piezocatalysts and competitive with the current photocatalysis technology. The findings not only enrich the potential piezocatalysis materials, but also provide useful guidance toward high-efficiency mechanically driven chemical reactions such as H2 evolution from water.

6.
Langmuir ; 38(13): 3984-3992, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319222

RESUMO

N and S codoped carbon dots having good water solubility have been successfully made by a novel hydrothermal method and characterized by FTIR, XPS, and TEM. The as-synthesized CDs were carbon particles rich in polar functional groups less than 10 nm in size. Electrochemical measurements, gravimetry, and surface analysis methods were utilized to examine the inhibition characteristics and adsorption mechanism of CDs on the carbon steel in acid pickling solutions. Electrochemical measurements verified that the CDs displayed adequate protection with high inhibition efficiency of 97.8%. The long-term weight-loss experiments up to 72 h further confirmed the excellent corrosion inhibition at room temperature and 313 K. The results presented are helpful for the formulation of more effective acid pickling corrosion inhibitors.

7.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628638

RESUMO

Polylactic acid-glycolic acid (PLGA) has been widely used in bone tissue engineering due to its favorable biocompatibility and adjustable biodegradation. 3D printing technology can prepare scaffolds with rich structure and function, and is one of the best methods to obtain scaffolds for bone tissue repair. This review systematically summarizes the research progress of 3D-printed, PLGA-based scaffolds. The properties of the modified components of scaffolds are introduced in detail. The influence of structure and printing method change in printing process is analyzed. The advantages and disadvantages of their applications are illustrated by several examples. Finally, we briefly discuss the limitations and future development direction of current 3D-printed, PLGA-based materials for bone tissue repair.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Osso e Ossos , Glicolatos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684728

RESUMO

As one of the most important energy storage devices, dielectric capacitors have attracted increasing attention because of their ultrahigh power density, which allows them to play a critical role in many high-power electrical systems. To date, four typical dielectric materials have been widely studied, including ferroelectrics, relaxor ferroelectrics, anti-ferroelectrics, and linear dielectrics. Among these materials, linear dielectric polymers are attractive due to their significant advantages in breakdown strength and efficiency. However, the practical application of linear dielectrics is usually severely hindered by their low energy density, which is caused by their relatively low dielectric constant. This review summarizes some typical studies on linear dielectric polymers and their nanocomposites, including linear dielectric polymer blends, ferroelectric/linear dielectric polymer blends, and linear polymer nanocomposites with various nanofillers. Moreover, through a detailed analysis of this research, we summarize several existing challenges and future perspectives in the research area of linear dielectric polymers, which may propel the development of linear dielectric polymers and realize their practical application.

9.
Small ; 16(15): e1902813, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31596546

RESUMO

Owing to their safety, high energy density, and long cycling life, all-solid-state lithium batteries (ASSLBs) have been identified as promising systems to power portable electronic devices and electric vehicles. Developing high-performance solid-state electrolytes is vital for the successful commercialization of ASSLBs. In particular, polymer-based composite solid electrolytes (PCSEs), derived from the incorporation of inorganic fillers into polymer solid electrolytes, have emerged as one of the most promising electrolyte candidates for ASSLBs because they can synergistically integrate many merits from their components. The development of PCSEs is summarized. Their major components, including typical polymer matrices and diverse inorganic fillers, are reviewed in detail. The effects of fillers on their ionic conductivity, mechanical strength, thermal/interfacial stability and possible Li+ -conductive mechanisms are discussed. Recent progress in a number of rationally constructed PCSEs by compositional and structural modulation based on different design concepts is introduced. Successful applications of PCSEs in various lithium-battery systems including lithium-sulfur and lithium-gas batteries are evaluated. Finally, the challenges and future perspectives for developing high-performance PCSEs are proposed.

10.
Phys Chem Chem Phys ; 22(46): 27096-27104, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33220667

RESUMO

In this paper, we systematically studied the thermoelectric power factor of Bi2O2Se when doped with a total of 21 main group elements. This was achieved using first principles density functional theory combined with semi-classical Boltzmann transport theory. Starting from the integral factor in Mott's formula, we thoroughly examined the thermoelectric power factor that was determined from the electronic structure. We also determined the mechanisms of action of temperature and carrier concentrations on these properties. The results show that there are different optimization strategies for the density of states (DOS) with different shapes around the Fermi level. The unconventional behaviours of the Sn, In and Tl doping cases are discussed. The present work uses a theoretical approach to study the effect of doping elements on the thermoelectric power factor of Bi2O2Se, which is valuable for optimizing its desired properties.

11.
Inorg Chem ; 57(10): 6051-6056, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29722989

RESUMO

The quaternary compound Cu2ZnSnSe4 (CZTSe), as a typical candidate for both solar cells and thermoelectrics, is of great interest for energy harvesting applications. Materials with a high thermoelectric efficiency have a relatively low thermal conductivity, which is closely related to their chemical bonding and lattice dynamics. Therefore, it is essential to investigate the lattice dynamics of materials to further improve their thermoelectric efficiency. Here we report a lattice dynamic study in a cobalt-substituted CZTSe system using temperature-dependent X-ray absorption fine structure spectroscopy (TXAFS). The lattice contribution to the thermal conductivity is dominant, and its reduction is mainly ascribed to the increment of point defects after cobalt substitution. Furthermore, a lattice dynamic study shows that the Einstein temperature of atomic pairs is reduced after cobalt substitution, revealing that increasing local structure disorder and weakened bonding for each of the atomic pairs are achieved, which gives us a new perspective for understanding the behavior of lattice thermal conductivity.

12.
J Am Chem Soc ; 139(39): 13779-13785, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28898065

RESUMO

Easy processing and flexibility of polymer electrolytes make them very promising in developing all-solid-state lithium batteries. However, their low room-temperature conductivity and poor mechanical and thermal properties still hinder their applications. Here, we use Li6.75La3Zr1.75Ta0.25O12 (LLZTO) ceramics to trigger structural modification of poly(vinylidene fluoride) (PVDF) polymer electrolyte. By combining experiments and first-principle calculations, we find that La atom of LLZTO could complex with the N atom and C═O group of solvent molecules such as N,N-dimethylformamide along with electrons enriching at the N atom, which behaves like a Lewis base and induces the chemical dehydrofluorination of the PVDF skeleton. Partially modified PVDF chains activate the interactions between the PVDF matrix, lithium salt, and LLZTO fillers, hence leading to significantly improved performance of the flexible electrolyte membrane (e.g., a high ionic conductivity of about 5 × 10-4 S cm-1 at 25 °C, high mechanical strength, and good thermal stability). For further illustration, a solid-state lithium battery of LiCoO2|PVDF-based membrane|Li is fabricated and delivers satisfactory rate capability and cycling stability at room temperature. Our study indicates that the LLZTO modifying PVDF membrane is a promising electrolyte used for all-solid-state lithium batteries.

13.
Phys Chem Chem Phys ; 18(21): 14580-7, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181423

RESUMO

The misfit layered cobaltate thermoelectrics are good candidates for high temperature thermoelectric applications. Ca3Co4O9 is a typical compound of this family, which consists of rock salt Ca2CoO3 slabs alternating with hexagonal CoO2 slabs with a large lattice mismatch along the b axis. Each slab is 0.3-0.5 nm thick and shows an inherent structural heterogeneity at the nanoscale. The latter is a key parameter that affects the electrical transport and the heat flow in these misfit structured thermoelectrics. To clarify the physical origin of the thermoelectric performance of iron doped Ca3Co4O9 we combined X-ray near-edge absorption spectroscopy (XANES) and quantum modeling using density functional theory. In contrast to single-site doping, the iron doping first occurs at the Co1 site of the rock salt slab at low doping while at higher doping it prefers the Ca1 site of the rock salt slab. Doping at the Ca1 site modifies the electronic structure tuning the nanoscale structural heterogeneity. This mechanism may open a new route to optimizing the thermoelectric performance of misfit layered thermoelectrics.

15.
Phys Chem Chem Phys ; 17(17): 11229-33, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25829235

RESUMO

Ga doped In2O3-based thermoelectric materials were prepared by spark plasma sintering (SPS) using sintered powders in the low temperature solid phase. The solubility of Ga in In2O3 is about 10 at%, much larger than other elements such as Ge, Ce, etc. The larger solubility of Ga allows us to optimize the thermal and electrical transport properties of Ga doped In2O3 in a wider window. While tuning the concentration of dopants, the thermoelectric performance of Ga doped In2O3 was enhanced through a synergistic approach combining band-gap engineering and phonon suppression. The power factor increases from ∼0.5 × 10(-4) to ∼9.6 × 10(-4) W mK(-2) at 700 °C while thermal conductivity reduces from ∼4 to ∼2 W mK(-1) at 700 °C in In1.9Ga0.1O3. The maximum ZT of 0.37, increased by a factor of 4 from the pristine In2O3, is achieved in In1.9Ga0.1O3 at 700 °C.

16.
Molecules ; 20(8): 15122-46, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26295223

RESUMO

The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and µ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.


Assuntos
Simulação por Computador , Eletroquímica , Método de Monte Carlo , Porfirinas/química , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Cloreto de Sódio/química , Aço/química , Adsorção , Corrosão , Espectroscopia Dielétrica , Elétrons , Microscopia Eletrônica de Varredura , Soluções , Termodinâmica
17.
Natl Sci Rev ; 11(4): nwae036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440218

RESUMO

This perspective defines and explores an innovative waste heat harvesting strategy, thermoelectrocatalysis (TECatal), emphasizing materials design and potential applications in clean energy, environmental, and biomedical technologies.

18.
ACS Appl Mater Interfaces ; 16(17): 22035-22047, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639478

RESUMO

Sodium (Na) super ion conductor (NASICON) structure Na3MnTi(PO4)3 (NMTP) is considered a promising cathode for sodium-ion batteries due to its reversible three-electron reaction. However, the inferior electronic conductivity and sluggish reaction kinetics limit its practical applications. Herein, we successfully constructed a three-dimensional cross-linked porous architecture NMTP material (AsN@NMTP/C) by a natural microbe of Aspergillus niger (AsN), and the structure of different NMTP cathodes was optimized by adjusting different transition metal Mn/Ti ratios. Both approaches effectively altered the three-dimensional NMTP structure, not only improving electronic conductivity and controlling Na+ diffusion pathways but also enhancing the electrochemical kinetics of the material. The resultant AsN@NMTP/C-650, sintered at 650 °C, exhibits better electrochemical performance with higher reversible three-electron reactions corresponding to the voltage platforms of Ti4+/3+, Mn3+/2+, and Mn4+/3+ around 2.1, 3.6, and 4.1 V (vs Na+/Na), respectively. The capacity retention rate is up to 89.3% after 1000 cycles at a 2C rate. Moreover, a series of results confirms that the Na3.4Mn1.2Ti0.8(PO4)3 cathode has the most excellent electrochemical performance when the Mn/Ti ratio is 1.2/0.8, with a high capacity of 96.59 mAh g-1 and 97.1% capacity retention after 500 cycles.

19.
Adv Mater ; : e2403400, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806163

RESUMO

The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.

20.
Small Methods ; : e2301619, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488726

RESUMO

BiCuSeO is a promising oxygen-containing thermoelectric material due to its intrinsically low lattice thermal conductivity and excellent service stability. However, the low electrical conductivity limits its thermoelectric performance. Aliovalent element doping can significantly improve their carrier concentration, but it may also impact carrier mobility and thermal transport properties. Considering the influence of graphene on carrier-phonon decoupling, Bi0.88 Pb0.06 Ca0.06 CuSeO (BPCCSO)-graphene composites are designed. For further practical application, a rapid preparation method is employed, taking less than 1 h, which combines self-propagating high-temperature synthesis with spark plasma sintering. The incorporation of graphene simultaneously optimizes the electrical properties and thermal conductivity, yielding a high ratio of weighted mobility to lattice thermal conductivity (144 at 300 K and 95 at 923 K). Ultimately, BPCCSO-graphene composites achieve exceptional thermoelectric performance with a ZT value of 1.6 at 923 K, bringing a ≈40% improvement over BPCCSO without graphene. This work further promotes the practical application of BiCuSeO-based materials and this facile and effective strategy can also be extended to other thermoelectric systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA