Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(5): 693-702, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700695

RESUMO

The development of oligomeric glucagon-like peptide-1 (GLP-1) and GLP-1-containing coagonists holds promise for enhancing the therapeutic potential of the GLP-1-based drugs for treating type 2 diabetes mellitus (T2DM). Here, we report a facile, efficient, and customizable strategy based on genetically encoded SpyCatcher-SpyTag chemistry and an inducible, cleavable self-aggregating tag (icSAT) scheme. icSAT-tagged SpyTag-fused GLP-1 and the dimeric or trimeric SpyCatcher scaffold were designed for dimeric or trimeric GLP-1, while icSAT-tagged SpyCatcher-fused GLP-1 and the icSAT-tagged SpyTag-fused GIP were designed for dual GLP-1/GIP (glucose-dependent insulinotropic polypeptide) receptor agonist. These SpyCatcher- and SpyTag-fused protein pairs were spontaneously ligated directly from the cell lysates. The subsequent icSAT scheme, coupled with a two-step standard column purification, resulted in target proteins with authentic N-termini, with yields ranging from 35 to 65 mg/L and purities exceeding 99%. In vitro assays revealed 3.0- to 4.1-fold increased activities for dimeric and trimeric GLP-1 compared to mono-GLP-1. The dual GLP-1/GIP receptor agonist exhibited balanced activity toward the GLP-1 receptor or the GIP receptor. All the proteins exhibited 1.8- to 3.0-fold prolonged half-lives in human serum compared to mono-GLP-1 or GIP. This study provides a generally applicable click biochemistry strategy for developing oligomeric or dual peptide/protein-based drug candidates.


Assuntos
Química Click , Peptídeo 1 Semelhante ao Glucagon , Peptídeo 1 Semelhante ao Glucagon/química , Humanos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/metabolismo , Desenho de Fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/química , Polipeptídeo Inibidor Gástrico/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
2.
Synth Syst Biotechnol ; 9(3): 462-469, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38634002

RESUMO

In industrial fermentation processes, microorganisms often encounter acid stress, which significantly impact their productivity. This study focused on the acid-resistant module composed of small RNA (sRNA) DsrA and the sRNA chaperone Hfq. Our previous study had shown that this module improved the cell growth of Escherichia coli MG1655 at low pH, but failed to obtain this desired phenotype in industrial strains. Here, we performed a quantitative analysis of DsrA-Hfq module to determine the optimal expression mode. We then assessed the potential of the CymR-based negative auto-regulation (NAR) circuit for industrial application, under different media, strains and pH levels. Growth assay at pH 4.5 revealed that NAR-05D04H circuit was the best acid-resistant circuit to improve the cell growth of E. coli MG1655. This circuit was robust and worked well in the industrial lysine-producing strain E. coli SCEcL3 at a starting pH of 6.8 and without pH control, resulting in a 250 % increase in lysine titer and comparable biomass in shaking flask fermentation compared to the parent strain. This study showed the practical application of NAR circuit in regulating DsrA-Hfq module, effectively and robustly improving the acid tolerance of industrial strains, which provides a new approach for breeding industrial strains with tolerance phenotype.

3.
Viruses ; 16(3)2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543787

RESUMO

Phages provide a potential therapy for multi-drug-resistant (MDR) bacteria. However, a significant portion of viral genes often remains unknown, posing potential dangers. The identification of non-essential genes helps dissect and simplify phage genomes, but current methods have various limitations. In this study, we present an in vivo two-plasmid transposon insertion system to assess the importance of phage genes, which is based on the V. cholerae transposon Tn6677, encoding a nuclease-deficient type I-F CRISPR-Cas system. We first validated the system in Pseudomonas aeruginosa PAO1 and its phage S1. We then used the selection marker AcrVA1 to protect transposon-inserted phages from CRISPR-Cas12a and enriched the transposon-inserted phages. For a pool of selected 10 open-reading frames (2 known functional protein genes and 8 hypothetical protein genes) of phage S1, we identified 5 (2 known functional protein genes and 3 hypothetical protein genes) as indispensable genes and the remaining 5 (all hypothetical protein genes) as dispensable genes. This approach offers a convenient, site-specific method that does not depend on homologous arms and double-strand breaks (DSBs), holding promise for future applications across a broader range of phages and facilitating the identification of the importance of phage genes and the insertion of genetic cargos.


Assuntos
Bacteriófagos , Bacteriófagos/genética , RNA , Transposases/genética , Sistemas CRISPR-Cas , Genes Virais , Bactérias/genética
4.
Cell Rep ; 43(8): 114583, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39110597

RESUMO

Vast shotgun metagenomics data remain an underutilized resource for novel enzymes. Artificial intelligence (AI) has increasingly been applied to protein mining, but its conventional performance evaluation is interpolative in nature, and these trained models often struggle to extrapolate effectively when challenged with unknown data. In this study, we present a framework (DeepMineLys [deep mining of phage lysins from human microbiome]) based on the convolutional neural network (CNN) to identify phage lysins from three human microbiome datasets. When validated with an independent dataset, our method achieved an F1-score of 84.00%, surpassing existing methods by 20.84%. We expressed 16 lysin candidates from the top 100 sequences in E. coli, confirming 11 as active. The best one displayed an activity 6.2-fold that of lysozyme derived from hen egg white, establishing it as the most potent lysin from the human microbiome. Our study also underscores several important issues when applying AI to biology questions. This framework should be applicable for mining other proteins.

5.
Int J Biol Macromol ; 269(Pt 1): 131986, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697423

RESUMO

D-allulose, a highly desirable sugar substitute, is primarily produced using the D-allulose 3-epimerase (DAE). However, the availability of usable DAE enzymes is limited. In this study, we discovered and engineered a novel DAE Rum55, derived from a human gut bacterium Ruminococcus sp. CAG55. The activity of Rum55 was strictly dependent on the presence of Co2+, and it exhibited an equilibrium conversion rate of 30.6 % and a half-life of 4.5 h at 50 °C. To enhance its performance, we engineered the interface interaction of Rum55 to stabilize its tetramer structure, and the best variant E268R was then attached with a self-assembling peptide to form active enzyme aggregates as carrier-free immobilization. The half-life of the best variant E268R-EKL16 at 50 °C was dramatically increased 30-fold to 135.3 h, and it maintained 90 % of its activity after 13 consecutive reaction cycles. Additionally, we identified that metal ions played a key role in stabilizing the tetramer structure of Rum55, and the dependence on metal ions for E268R-EKL16 was significantly reduced. This study provides a useful route for improving the thermostability of DAEs, opening up new possibilities for the industrial production of D-allulose.


Assuntos
Estabilidade Enzimática , Engenharia de Proteínas , Ruminococcus , Ruminococcus/enzimologia , Ruminococcus/genética , Engenharia de Proteínas/métodos , Peptídeos/química , Peptídeos/metabolismo , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Cinética , Modelos Moleculares , Frutose/metabolismo , Frutose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA