Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 272: 116012, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290308

RESUMO

Heavy metal pollution of agricultural soils, especially from cadmium (Cd) contaminationcaused serious problems in both food security and economy. Sorghum bicolor (L.) showed a great potential in phytoremediation of Cd contamination due to its fast growth, high yield and easy harvesting. However, the growth of S. bicolor plants tends to be inhibited under Cd exposure, which limited its application for Cd remediation. Plant growth-promoting rhizobacteria may enhance the Cd resistance of S. bicolor and thus improve its Cd removal efficiency. In this study, three Cd-resistant bacteria were screened based on Cd and acid tolerance and identified as Bacillus velezensis QZG6, Enterobacter cloacae QZS3 and Bacillus cereus QZS8, by 16S rRNA sequencing. Inoculation of hydroponic plants with strains QZG6, QZS3 or QZS8 significantly promoted the biomass of sorghum plants by 31.52%, 50.20% and 26.93%, respectively, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 65.74%, 31.52%, and 80.91%, respectively, when inoculated with the strains QZS3. For pot experiment, strains QZG6, QZS3 and QZS8 significantly promoted the biomass of sorghum plants by 47.30%, 19.27% and 58.47%, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 67.20%, 22.40%, and 40.65%, respectively, when inoculated with the strains QZS3. All these three strains significantly increased the Cd removal efficiency of the plants by 42.16% (QZG6), 18.76% (QZS3) and 21.06% (QZS8). To investigate the bacterial characteristics associated with growth promotion of S. bicolor plants, the ability on nitrogen fixation, phosphorus solubilization, siderophores production, and phytohormones production were determined. All the strains were able to fix nitrogen. Phosphorus release was observed for strains QZG6 (inorganic or organic phosphorus) and QZS3 (inorganic phosphorus). Both QZG6 and QZS8 were able to produce siderophores, while only QZG6 was positive for ACC deaminase. All the strains produced IAA, SA and GA. These results indicated that the three strains promoted the plant growth under Cd stress, probably through Cd detoxification by siderophores, as well as through growth regulation by N/P nutrient supply and phytohormone. The present study showed a great potential of the three Cd-resistant strains combined with S. bicolor plants in the remediation of Cd-polluted soils, which may provide a new insight into combining the advantages of microbes and plants to improve the remediation of Cd-contaminated soils.


Assuntos
Poluentes do Solo , Sorghum , Cádmio/toxicidade , Cádmio/análise , Sorghum/genética , RNA Ribossômico 16S/genética , Reguladores de Crescimento de Plantas , Biodegradação Ambiental , Solo , Bacillus cereus , Sideróforos , Fósforo , Superóxido Dismutase , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
2.
Arch Microbiol ; 205(4): 132, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959350

RESUMO

Sphingomonas paucimobilis ZJSH1 is an endophytic bacterium isolated from the roots of Dendrobium officinale with the ability to promote plant growth. It was found that the genome of strain ZJSH1 had gene fragment rearrangement compared with the genomes of the other four strains of S. paucimobilis, and the genome was integrated with phage genes. Functional analysis showed that the strain contained colonization-related genes, chemotaxis and invasion. A variety of genes encoding active materials, such as hormones (IAA, SA, ABA and zeaxanthin), phosphate cycle, antioxidant enzymes, and polysaccharides were identified which provide the strain with growth promotion and stress-resistant characteristics. Experiments proved that S. paucimobilis ZJSH1 grew well in media containing 80 g/L sodium chloride, 240 g/L polyethylene glycol and 800 µmol/L Cd2+, indicating its potential for resistance to stresses of salt, drought and cadmium, respectively. S. paucimobilis ZJSH1 is the only endophytic bacterium of this species that has been reported to promote plant growth. The analysis of its genome is conducive to understanding its growth-promoting mechanism and laying a foundation for the development and utilization of this species in the field of agriculture.


Assuntos
Dendrobium , Sphingomonas , Dendrobium/genética , Dendrobium/microbiologia , Sphingomonas/genética , Cádmio , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA