Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 199: 110654, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32402897

RESUMO

Miscanthus x giganteus is suggested as a good candidate for phytostabilization of metal-polluted soils. Its late harvest in winter generates large amounts of leaf litter on the soil surface. However, little is known about the mobility and the bioavailability of metals following leaf decomposition and the consequences on the succeeding culture. Ex situ artificial aging for 1, 3, and 6 months was conducted with miscanthus leaf fragments incorporated into three agricultural soils displaying a gradient concentration in Cd (0.6, 3.1 and 7.9 mg kg-1), Pb (32.0, 194.6 and 468.6 mg kg-1), and Zn (48.4, 276.3 and 490.2 mg kg-1) to simulate the leaf litter input over 20 years of miscanthus culture. We investigated the impacts on physicochemical and biological soil parameters, CaCl2-extractable metal, and their subsequent ryegrass shoot concentrations, and hence on ryegrass health. The results showed that the amended soils possessed higher pH along with greater available phosphorous and soil organic carbon values. The respiratory activity and microbial biomass carbon in the amended soils increased mainly after 1 month of aging, and decreased afterwards. Despite the higher Pb- and Zn-CaCl2 extractability in the amended soils, the phytoavailability slightly increased only in the most contaminated soils. Moreover, leaf incorporation did not affect the ryegrass biomass, photosynthetic pigment contents, nor the antioxidative enzyme activities. Conclusively, leaf incorporation induced slight variations in soil physicochemical and biological parameters, as well as metal extractability, but not to an extent that might cause a considerable threat to the subsequent culture. Nevertheless, these results are preliminary data that require confirmation by long-term in-situ experimentations as they reflect the modelization of long-term impact of leaf decomposition on soil-plant system.


Assuntos
Metais Pesados/análise , Modelos Teóricos , Poaceae , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Metais Pesados/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Poluentes do Solo/metabolismo
2.
J Exp Bot ; 69(22): 5561-5572, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30215761

RESUMO

Human activities generate environmental stresses that can lead plant populations to become extinct. Population survival would require the evolution of adaptive responses that increase tolerance to these stresses. Thus, in pseudometallophyte species that have colonized anthropogenic metalliferous habitats, the evolution of increased metal tolerance is expected in metallicolous populations. However, the mechanisms by which metal tolerance evolves remain unclear. In this study, parent populations were created from non-metallicolous families of Noccaea caerulescens. They were cultivated for one generation in mesocosms and under various levels of zinc (Zn) contamination to assess whether Zn in soil represents a selective pressure. Individual plant fitness estimates were used to create descendant populations, which were cultivated in controlled conditions with moderate Zn contamination to test for adaptive evolution in functional traits. The number of families showing high fitness estimates in mesocosms was progressively reduced with increasing Zn levels in soil, suggesting increasing selection for metal tolerance. In the next generation, adaptive evolution was suggested for some physiological and ecological traits in descendants of the most exposed populations, together with a significant decrease of Zn hyperaccumulation. Our results confirm experimentally that Zn alone can be a significant evolutionary pressure promoting adaptive divergence among populations.


Assuntos
Evolução Biológica , Brassicaceae/efeitos dos fármacos , Brassicaceae/fisiologia , Seleção Genética , Poluentes do Solo/efeitos adversos , Solo/química , Zinco/efeitos adversos , Adaptação Biológica , Poluição Ambiental/efeitos adversos
3.
Environ Sci Technol ; 52(21): 12757-12764, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30335981

RESUMO

With the advancement in nanotechnology, particularly the use of TiO2 nanoparticles (NPs), there is a need to study their release into the environment and assess the related risk in an environmentally relevant contamination scenario. In the present study, the transfer and toxicity of TiO2 NPs in microcosms mimicking terrestrial and aquatic ecosystems were evaluated. The contaminated soil was prepared by spiking natural soils, with these then used as the basis for all exposure systems including preparation of soil leachates for amphibian exposure. Results demonstrated significant reductions in bacterial (-45%) and archaeal (-36%) nitrifier abundance; significant translocation of Ti to M. truncatula leaves (+422%); significant reductions in plant height (-17%), number of leaves (-29%), and aboveground biomass (-53%); nonsignificant Ti uptake in snail foot and viscera, and excretion in feces; and genotoxicity to X. laevis larvae (+119% micronuclei). Our study highlights a possible risk of engineered TiO2 NPs in the environment in terms of trophic transfer and toxicity in both terrestrial and aquatic environments.


Assuntos
Ecossistema , Nanopartículas , Animais , Solo , Titânio
4.
Plants (Basel) ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406924

RESUMO

The positive impact on restoring soil functionality, decreasing toxic elements (TE) bioaccessibility, and enhancing soil physicochemical and biological parameters established a consensus on considering a Miscanthus × giganteus convenient species for phytomanaging wide TE contaminated areas. Nevertheless, information about the plant's mode of reaction to elevated soil multi-TE concentrations is still scarce. For the sake of investigating the miscanthus response to stressful TE concentrations, an ex-situ pot experiment was initiated for 18 months, with three miscanthus cultivars referred to as B, U, and A planted in soils with gradient Cd, Pb, and Zn concentrations. A non-contaminated control soil was introduced as well, and plants were cultivated within. Results revealed that the long exposure to increasing soil TE concentrations caused the number of tillers per plant to decline and the TE concentrations in the leaves to boost progressively with the soil contamination. The photosynthetic pigments (chlorophyll a, b, and carotenoids) were negatively affected as well. However, the phenolic compounds, flavonoids, tannins, and anthocyanins, along with the antioxidant enzymatic activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase elevated progressively with the TE concentration and exposure duration. Conclusively, miscanthus plants demonstrated an intensified and synchronized antioxidative activity against the TE concentration.

5.
J Hazard Mater ; 431: 128613, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35359102

RESUMO

Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems. In this study, we aimed at understanding the transfer and toxicity of contaminants (Cd, Pb, Zn and CNTs) in microcosms including native soil bacteria, earthworms and lettuce. After a 6 week exposure, no effect of the addition of CNTs to metal contaminated soils was detected on bacterial concentration or earthworm growth. However, in lettuce, an interactive effect between CNTs and metals was highlighted: in the soil containing the highest metal concentrations the addition of 0.1 mg kg-1 CNTs led to a biomass loss (-22%) and a flavonoid concentration increase (+27%). In parallel, the addition of CNTs led to differential impacts on elemental uptake in lettuce leaves possibly related to the soil organic matter content. For earthworms, the addition of 10 mg kg-1 CNTs resulted in an increased body elemental transfer in the soil with the higher organic matter content (Pb: + 34% and Zn: + 25%).


Assuntos
Nanotubos de Carbono , Oligoquetos , Poluentes do Solo , Animais , Metais/toxicidade , Nanotubos de Carbono/toxicidade , Solo/química , Poluentes do Solo/análise
6.
Plants (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685846

RESUMO

Miscanthus × giganteus demonstrated good phytostabilization potentials in toxic element (TE) contaminated soils. However, information about its tolerance to elevated concentrations is still scarce. Therefore, an ex-situ pot experiment was launched using three cultivars (termed B, U, and A) grown in soils with a gradient Cd, Pb and Zn concentrations. Control plants were also cultivated in non-contaminated soil. Results show that the number of tillers per plant, stem diameter as well as leaf photosynthetic pigments (chlorophyll a, b and carotenoids) were negatively impacted by soil contamination. On the other hand, phenolic compounds, flavonoids, tannins, and anthocyanins levels along with the antioxidant enzymatic activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased in the plants grown on contaminated soils. Altogether, these data demonstrate that miscanthus is impacted by concentrations of toxic elements yet is able to tolerate high levels of soil contamination. These results may contribute to clarifying the miscanthus tolerance strategy against high contamination levels and its efficiency in phytoremediation.

7.
Chemosphere ; 274: 129854, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33581396

RESUMO

Crop plants are exposed to a variety of contaminants through sewage sludge spreading but very little is known about the impact of emerging contaminants such as nanomaterials. To date their impact on plants is still very controversial with many works claiming negative impacts while some authors suggest their use as plant growth regulator in agriculture. In this study, aiming to better understand where these discrepancies may come from, we investigated the influence of plant species (tomato, rapeseed, cucumber and maize) on plant response to a carbon nanotube contamination in soil condition. Our results demonstrate that the same CNT contamination can lead to different effects depending on plant species with positive impacts on cucumber and rapeseed (more than 50% increase in leaf biomass and surface area and 29% increase in chlorophyll for cucumber) but negative impact on maize (-14% for plant height), while tomato was insensitive. FTIR analysis of biomacromolecule composition suggested that these differences could be related with plant cell wall composition (in particular: pectins, xyloglucans and lignins). As a summary, no overall conclusion can be drawn about the toxicity of a specific nanomaterial for all plant species.


Assuntos
Nanotubos de Carbono , Poluentes do Solo , Agricultura , Nanotubos de Carbono/toxicidade , Esgotos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
8.
Chemosphere ; 245: 125552, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31846788

RESUMO

Genotypic variability has been considered for years as a key attribute in species adaptation to new environments. It has been extensively studied in a context of chemical resistance, but remains poorly studied in response to chemical exposure in a context of global change. As aquatic ecosystems are particularly affected by environmental changes, we aimed to study how genotypic variability could inflect the sensitivity of aquatic plants to chemicals. Seven genotypes of Myriophyllum spicatum were exposed to three copper concentrations at 0, 0.15 and 0.5 mg/L. The sensitivity of the different genotypes was assessed through several endpoints such as relative growth rate (RGR) and morphological traits, as well as physiological markers, such as plant biomacromolecular composition. Our results showed that genotypes exhibited significant differences in their life-history traits in absence of chemical contamination. Some trait syndromes were observed, and three growth strategies were identified: (1) biomass production and main shoot elongation, (2) dry matter storage with denser whorls to promote resource conservation and (3) lateral shoot production. An up to eightfold difference in sensitivity for growth-related endpoints was observed among genotypes. Differences in sensitivity were partly attributed to morphological life-history traits. Our results confirm that genotypic variability can significantly affect M. spicatum sensitivity to Cu, and may influence the outcomes of laboratory testing based on the study of one single genotype. We recommend including genotypic variation as an assessment factor in ecological risk assessment and to study this source of variability more in depth as a possible driver of ecosystem resilience.


Assuntos
Cobre/toxicidade , Saxifragales/fisiologia , Poluentes Químicos da Água/toxicidade , Biomassa , Ecossistema , Genótipo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Plantas , Medição de Risco
9.
J Hazard Mater ; 369: 191-198, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776602

RESUMO

Increasing evidence indicates the presence of engineered nanoparticles (ENPs) in sewage sludge derived from wastewater treatment. Land application of sewage sludge is, therefore, considered as an important pathway for ENP transfer to the environment. The aim of this work was to understand the effects of sewage sludge containing nano-TiO2 on plants (tomato) when used as an amendment in agricultural soil. We assessed developmental parameters for the entire plant life cycle along with metabolic and bio-macromolecule changes and titanium accumulation in plants. The results suggest that the sewage sludge amendment containing nano-TiO2 increased plant growth (142% leaf biomass, 102% fruit yield), without causing changes in biochemical responses, except for a 43% decrease in leaf tannin concentration. Changes in elemental concentrations (mainly Fe, B, P, Na, and Mn) of plant stem, leaves and, to a lesser extent fruits were observed. Fourier-transformed infrared analysis showed maximum changes in plant leaves (decrease in tannins and lignins and increase in carbohydrates) but no change in fruits. No significant Ti enrichment was detected in tomato fruits. In conclusion, we evidenced no acute toxicity to plants and no major implication for food safety after one plant life cycle exposure.


Assuntos
Nanopartículas Metálicas/química , Esgotos , Solanum lycopersicum/crescimento & desenvolvimento , Taninos/química , Titânio/química , Agricultura , Biomarcadores , Biomassa , Clorofila/química , Estágios do Ciclo de Vida/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Folhas de Planta , Solo , Poluentes do Solo , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água
10.
Sci Total Environ ; 675: 501-512, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31030156

RESUMO

The plant microbiome is an important factor for plant health and productivity. While the impact of nitrogen (N) availability for plant growth and development is well established, its influence on the microbial phyllosphere community structure is unknown. We hypothesize that nitrogen impacts the growth and abundance of several microorganisms on the leaf surface. The bacterial and fungal communities of baby leaf spinach (Spinacia oleracea), and rocket (Diplotaxis tenuifolia) were investigated in a field trial for two years in a commercial setting. Nitrogen fertilizer was tested in four doses (basic nitrogen, basic + suboptimal, basic + commercial, basic + excess) with six replicates in each. Culture-independent (Illumina sequencing) and culture-dependent (viable count and identification of bacterial isolates) community studies were combined with monitoring of plant physiology and site weather conditions. This study found that alpha diversity of bacterial communities decreased in response to increasing nitrogen fertilizer dose, whereas viable counts showed no differences. Correspondingly, fungal communities of the spinach phyllosphere showed a decreasing pattern, whereas the decreasing diversity of fungal communities of rocket was not significant. Plant species and effects of annual variations on microbiome structure were observed for bacterial and fungal communities on both spinach and rocket. This study provides novel insights on the impact of nitrogen fertilizer regime on a nutrient scarce habitat, the phyllosphere.


Assuntos
Brassicaceae/microbiologia , Monitoramento Ambiental , Minerais/análise , Folhas de Planta/microbiologia , Spinacia oleracea/microbiologia , Biodiversidade , Brassicaceae/química , Microbiota , Folhas de Planta/química , Spinacia oleracea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA