Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Health Geogr ; 21(1): 18, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369009

RESUMO

BACKGROUND: Mapping geographical accessibility to health services is essential to improve access to public health in sub-Saharan Africa. Different methods exist to estimate geographical accessibility, but little is known about the ability of these methods to represent the experienced accessibility of the population, and about the added-value of sophisticated and data-demanding methods over simpler ones. Here we compare the most commonly used methods to survey-based perceived accessibility in different geographical settings. METHODS: Modelled accessibility maps are computed for 12 selected sub-Saharan African countries using four methods: Euclidean distance, cost-distance considering walking and motorized speed, and Kernel density. All methods are based on open and large-scale datasets to allow replication. Correlation coefficients are computed between the four modelled accessibility indexes and the perceived accessibility index extracted from Demographic and Health Surveys (DHS), and compared across different socio-geographical contexts (rural and urban, population with or without access to motorized transports, per country). RESULTS: Our analysis suggests that, at medium spatial resolution and using globally-consistent input datasets, the use of sophisticated and data-demanding methods is difficult to justify as their added value over a simple Euclidian distance method is not clear. We also highlight that all modelled accessibilities are better correlated with perceived accessibility in rural than urban contexts and for population who do not have access to motorized transportation. CONCLUSIONS: This paper should guide researchers in the public health domain for knowing strengths and limits of different methods to evaluate disparities in health services accessibility. We suggest that using cost-distance accessibility maps over Euclidean distance is not always relevant, especially when based on low resolution and/or non-exhaustive geographical datasets, which is often the case in low- and middle-income countries.


Assuntos
Instalações de Saúde , Acessibilidade aos Serviços de Saúde , Humanos , Meios de Transporte , Inquéritos e Questionários , População Rural
2.
BMC Infect Dis ; 21(1): 1261, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34923959

RESUMO

BACKGROUND: Cholera outbreaks in western Democratic Republic of the Congo (DRC) are thought to be primarily the result of westward spread of cases from the Great Lakes Region. However, other patterns of spatial spread in this part of the country should not be excluded. The aim of this study was to explore alternative routes of spatial spread in western DRC. METHODS: A literature review was conducted to reconstruct major outbreak expansions of cholera in western DRC since its introduction in 1973. We also collected data on cholera cases reported at the health zone (HZ) scale by the national surveillance system during 2000-2018. Based on data from routine disease surveillance, we identified two subperiods (week 45, 2012-week 42, 2013 and week 40, 2017-week 52, 2018) for which the retrospective space-time permutation scan statistic was implemented to detect spatiotemporal clusters of cholera cases and then to infer the spread patterns in western DRC other than that described in the literature. RESULTS: Beyond westward and cross-border spread in the West Congo Basin from the Great Lakes Region, other dynamics of cholera epidemic propagation were observed from neighboring countries, such as Angola, to non-endemic provinces of southwestern DRC. Space-time clustering analyses sequentially detected clusters of cholera cases from southwestern DRC to the northern provinces, demonstrating a downstream-to-upstream spread along the Congo River. CONCLUSIONS: The spread of cholera in western DRC is not one-sided. There are other patterns of spatial spread, including a propagation from downstream to upstream areas along the Congo River, to be considered as preferential trajectories of cholera in western DRC.


Assuntos
Cólera , Epidemias , Cólera/epidemiologia , República Democrática do Congo/epidemiologia , Humanos , Estudos Retrospectivos , Análise Espaço-Temporal
3.
Int J Health Geogr ; 20(1): 29, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127000

RESUMO

BACKGROUND: The COVID-19 pandemic is affecting nations globally, but with an impact exhibiting significant spatial and temporal variation at the sub-national level. Identifying and disentangling the drivers of resulting hospitalisation incidence at the local scale is key to predict, mitigate and manage epidemic surges, but also to develop targeted measures. However, this type of analysis is often not possible because of the lack of spatially-explicit health data and spatial uncertainties associated with infection. METHODS: To overcome these limitations, we propose an analytical framework to investigate potential drivers of the spatio-temporal heterogeneity in COVID-19 hospitalisation incidence when data are only available at the hospital level. Specifically, the approach is based on the delimitation of hospital catchment areas, which allows analysing associations between hospitalisation incidence and spatial or temporal covariates. We illustrate and apply our analytical framework to Belgium, a country heavily impacted by two COVID-19 epidemic waves in 2020, both in terms of mortality and hospitalisation incidence. RESULTS: Our spatial analyses reveal an association between the hospitalisation incidence and the local density of nursing home residents, which confirms the important impact of COVID-19 in elderly communities of Belgium. Our temporal analyses further indicate a pronounced seasonality in hospitalisation incidence associated with the seasonality of weather variables. Taking advantage of these associations, we discuss the feasibility of predictive models based on machine learning to predict future hospitalisation incidence. CONCLUSION: Our reproducible analytical workflow allows performing spatially-explicit analyses of data aggregated at the hospital level and can be used to explore potential drivers and dynamic of COVID-19 hospitalisation incidence at regional or national scales.


Assuntos
COVID-19 , Pandemias , Idoso , Bélgica/epidemiologia , Hospitais , Humanos , Incidência , SARS-CoV-2 , Análise Espaço-Temporal
4.
Int J Health Geogr ; 19(1): 38, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958055

RESUMO

BACKGROUND: The rapid and often uncontrolled rural-urban migration in Sub-Saharan Africa is transforming urban landscapes expected to provide shelter for more than 50% of Africa's population by 2030. Consequently, the burden of malaria is increasingly affecting the urban population, while socio-economic inequalities within the urban settings are intensified. Few studies, relying mostly on moderate to high resolution datasets and standard predictive variables such as building and vegetation density, have tackled the topic of modeling intra-urban malaria at the city extent. In this research, we investigate the contribution of very-high-resolution satellite-derived land-use, land-cover and population information for modeling the spatial distribution of urban malaria prevalence across large spatial extents. As case studies, we apply our methods to two Sub-Saharan African cities, Kampala and Dar es Salaam. METHODS: Openly accessible land-cover, land-use, population and OpenStreetMap data were employed to spatially model Plasmodium falciparum parasite rate standardized to the age group 2-10 years (PfPR2-10) in the two cities through the use of a Random Forest (RF) regressor. The RF models integrated physical and socio-economic information to predict PfPR2-10 across the urban landscape. Intra-urban population distribution maps were used to adjust the estimates according to the underlying population. RESULTS: The results suggest that the spatial distribution of PfPR2-10 in both cities is diverse and highly variable across the urban fabric. Dense informal settlements exhibit a positive relationship with PfPR2-10 and hotspots of malaria prevalence were found near suitable vector breeding sites such as wetlands, marshes and riparian vegetation. In both cities, there is a clear separation of higher risk in informal settlements and lower risk in the more affluent neighborhoods. Additionally, areas associated with urban agriculture exhibit higher malaria prevalence values. CONCLUSIONS: The outcome of this research highlights that populations living in informal settlements show higher malaria prevalence compared to those in planned residential neighborhoods. This is due to (i) increased human exposure to vectors, (ii) increased vector density and (iii) a reduced capacity to cope with malaria burden. Since informal settlements are rapidly expanding every year and often house large parts of the urban population, this emphasizes the need for systematic and consistent malaria surveys in such areas. Finally, this study demonstrates the importance of remote sensing as an epidemiological tool for mapping urban malaria variations at large spatial extents, and for promoting evidence-based policy making and control efforts.


Assuntos
Parasitos , Plasmodium falciparum , Animais , Criança , Pré-Escolar , Cidades , Humanos , Tanzânia , Uganda , População Urbana
5.
J Urban Health ; 96(5): 792, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31486003

RESUMO

Readers should note an additional Acknowledgment for this article: Dana Thomson is funded by the Economic and Social Research Council grant number ES/5500161/1.

6.
J Urban Health ; 96(4): 514-536, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31214975

RESUMO

Area-level indicators of the determinants of health are vital to plan and monitor progress toward targets such as the Sustainable Development Goals (SDGs). Tools such as the Urban Health Equity Assessment and Response Tool (Urban HEART) and UN-Habitat Urban Inequities Surveys identify dozens of area-level health determinant indicators that decision-makers can use to track and attempt to address population health burdens and inequalities. However, questions remain as to how such indicators can be measured in a cost-effective way. Area-level health determinants reflect the physical, ecological, and social environments that influence health outcomes at community and societal levels, and include, among others, access to quality health facilities, safe parks, and other urban services, traffic density, level of informality, level of air pollution, degree of social exclusion, and extent of social networks. The identification and disaggregation of indicators is necessarily constrained by which datasets are available. Typically, these include household- and individual-level survey, census, administrative, and health system data. However, continued advancements in earth observation (EO), geographical information system (GIS), and mobile technologies mean that new sources of area-level health determinant indicators derived from satellite imagery, aggregated anonymized mobile phone data, and other sources are also becoming available at granular geographic scale. Not only can these data be used to directly calculate neighborhood- and city-level indicators, they can be combined with survey, census, administrative and health system data to model household- and individual-level outcomes (e.g., population density, household wealth) with tremendous detail and accuracy. WorldPop and the Demographic and Health Surveys (DHS) have already modeled dozens of household survey indicators at country or continental scales at resolutions of 1 × 1 km or even smaller. This paper aims to broaden perceptions about which types of datasets are available for health and development decision-making. For data scientists, we flag area-level indicators at city and sub-city scales identified by health decision-makers in the SDGs, Urban HEART, and other initiatives. For local health decision-makers, we summarize a menu of new datasets that can be feasibly generated from EO, mobile phone, and other spatial data-ideally to be made free and publicly available-and offer lay descriptions of some of the difficulties in generating such data products.


Assuntos
Análise de Dados , Tomada de Decisões , Equidade em Saúde , Nível de Saúde , Características de Residência/estatística & dados numéricos , Saúde da População Urbana/estatística & dados numéricos , Cidades/estatística & dados numéricos , Países em Desenvolvimento/estatística & dados numéricos , Humanos
7.
Malar J ; 16(1): 49, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125996

RESUMO

BACKGROUND: Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. METHODS AND RESULTS: This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. CONCLUSION: Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.


Assuntos
Malária Falciparum/epidemiologia , Plasmodium falciparum/fisiologia , Densidade Demográfica , Urbanização , África Subsaariana/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Madagáscar/epidemiologia , Malária Falciparum/parasitologia , Masculino , Prevalência , Análise de Regressão
8.
Proc Natl Acad Sci U S A ; 111(45): 15888-93, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349388

RESUMO

During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.


Assuntos
Telefone Celular , Modelos Teóricos , Dinâmica Populacional , Feminino , França , Humanos , Masculino , Portugal
9.
Popul Health Metr ; 14: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777514

RESUMO

BACKGROUND: Reliable health metrics are crucial for accurately assessing disease burden and planning interventions. Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of denominators to transform case counts into incidence measures. These denominator estimates generally come from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of short-term human population movement and to map dynamism in population densities. METHODS: We show how mobile phone data can be used to measure seasonal changes in health district population numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations in denominators caused by seasonal mobility on malaria incidence estimates. RESULTS: We show that even in a sparsely populated country with large distances between population centers, such as Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps. These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in the north of Namibia and underestimation in lower-risk areas when compared to using static populations. CONCLUSION: The results here highlight how health metrics that rely on static estimates of denominators from censuses may differ substantially once mobility and seasonal variations are taken into account. With respect to the setting of malaria in Namibia, the results indicate that Namibia may actually be closer to malaria elimination than previously thought. More broadly, the results highlight how dynamic populations are. In addition to affecting incidence estimates, these changes in population density will also have an impact on allocation of medical resources. Awareness of seasonal movements has the potential to improve the impact of interventions, such as vaccination campaigns or distributions of commodities like bed nets.


Assuntos
Malária/epidemiologia , Dinâmica Populacional , Vigilância da População/métodos , Estações do Ano , Viagem , Telefone Celular , Humanos , Incidência , Namíbia , Dinâmica Populacional/estatística & dados numéricos , Migrantes
10.
BMC Vet Res ; 12(1): 218, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716322

RESUMO

BACKGROUND: In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. RESULTS: Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis. CONCLUSIONS: The very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.


Assuntos
Criação de Animais Domésticos/estatística & dados numéricos , Análise Espacial , Suínos/fisiologia , Criação de Animais Domésticos/tendências , Animais , Tailândia
11.
Int J Health Geogr ; 15(1): 26, 2016 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-27473186

RESUMO

BACKGROUND: With more than half of Africa's population expected to live in urban settlements by 2030, the burden of malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed variables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014. METHODS: High resolution SPOT satellite imagery was used to identify urban environmental factors associated malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria risk map of Dar es Salaam. RESULTS: Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas. CONCLUSIONS: The predictive maps produced can serve as valuable resources for municipal councils aiming to shrink the extents of malaria across cities, target resources for vector control or intensify mosquito and disease surveillance. The semi-automated modelling process developed can be replicated in other urban areas to identify factors that influence heterogeneity in malaria risk patterns and detect vulnerable zones. There is a definite need to expand research into the unique epidemiology of malaria transmission in urban areas for focal elimination and sustained control agendas.


Assuntos
Meio Ambiente , Mapeamento Geográfico , Imagens de Satélites/métodos , População Urbana , Animais , Anopheles/crescimento & desenvolvimento , Inteligência Artificial , Humanos , Insetos Vetores/crescimento & desenvolvimento , Larva , Malária/epidemiologia , Plasmodium falciparum/crescimento & desenvolvimento , Prevalência , Medição de Risco , Análise Espaço-Temporal , Tanzânia/epidemiologia
12.
BMC Vet Res ; 11: 81, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25880385

RESUMO

BACKGROUND: A major reservoir of Nipah virus is believed to be the flying fox genus Pteropus, a fruit bat distributed across many of the world's tropical and sub-tropical areas. The emergence of the virus and its zoonotic transmission to livestock and humans have been linked to losses in the bat's habitat. Nipah has been identified in a number of indigenous flying fox populations in Thailand. While no evidence of infection in domestic pigs or people has been found to date, pig farming is an active agricultural sector in Thailand and therefore could be a potential pathway for zoonotic disease transmission from the bat reservoirs. The disease, then, represents a potential zoonotic risk. To characterize the spatial habitat of flying fox populations along Thailand's Central Plain, and to map potential contact zones between flying fox habitats, pig farms and human settlements, we conducted field observation, remote sensing, and ecological niche modeling to characterize flying fox colonies and their ecological neighborhoods. A Potential Surface Analysis was applied to map contact zones among local epizootic actors. RESULTS: Flying fox colonies are found mainly on Thailand's Central Plain, particularly in locations surrounded by bodies of water, vegetation, and safe havens such as Buddhist temples. High-risk areas for Nipah zoonosis in pigs include the agricultural ring around the Bangkok metropolitan region where the density of pig farms is high. CONCLUSIONS: Passive and active surveillance programs should be prioritized around Bangkok, particularly on farms with low biosecurity, close to water, and/or on which orchards are concomitantly grown. Integration of human and animal health surveillance should be pursued in these same areas. Such proactive planning would help conserve flying fox colonies and should help prevent zoonotic transmission of Nipah and other pathogens.


Assuntos
Quirópteros/fisiologia , Infecções por Henipavirus/veterinária , Vírus Nipah/fisiologia , Distribuição Animal , Animais , Quirópteros/virologia , Reservatórios de Doenças , Sistemas de Informação Geográfica , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Humanos , Modelos Biológicos , Fatores de Risco , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Tailândia/epidemiologia
13.
BMC Vet Res ; 10: 174, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25091559

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) has become a worldwide endemic disease of pigs. In 2006, an atypical and more virulent PRRS (HP-PRRS) emerged in China and spread to many countries, including Thailand. This study aimed to provide a first description of the spatio-temporal pattern of PRRS in Thailand and to quantify the statistical relationship between the presence of PRRS at the sub-district level and a set of risk factors. This should provide a basis for improving disease surveillance and control of PRRS in Thailand. RESULTS: Spatial scan statistics were used to detect clusters of outbreaks and allowed the identification of six spatial clusters covering 15 provinces of Thailand. Two modeling approaches were used to relate the presence or absence of PRRS outbreaks at the sub-district level to demographic characteristics of pig farming and other epidemiological spatial variables: autologistic multiple regressions and boosted regression trees (BRT). The variables showing a statistically significant association with PRRS presence in the autologistic multiple regression model were the sub-district human population and number of farms with breeding sows. The predictive power of the model, as measured by the area under the curve (AUC) of the receiver operating characteristics (ROC) plots was moderate. BRT models had higher goodness of fit the metrics and identified the sub-district human population and density of farms with breeding sows as important predictor variables. CONCLUSIONS: The results indicated that farms with breeding sows may be an important group for targeted surveillance and control. However, these findings obtained at the sub-district level should be complemented by farm-level epidemiological investigations in order to obtain a more comprehensive view of the factors affecting PRRS presence. In this study, the outbreaks of PRRS could not be differentiated from the potential novel HP-PPRS form, which was recently discovered in the country.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Animais , Surtos de Doenças/veterinária , Modelos Logísticos , Análise Multivariada , Síndrome Respiratória e Reprodutiva Suína/transmissão , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , Tailândia/epidemiologia , Fatores de Tempo
14.
Popul Health Metr ; 11(1): 11, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23875684

RESUMO

The Millennium Development Goals (MDGs) have prompted an expansion in approaches to deriving health metrics to measure progress toward their achievement. Accurate measurements should take into account the high degrees of spatial heterogeneity in health risks across countries, and this has prompted the development of sophisticated cartographic techniques for mapping and modeling risks. Conversion of these risks to relevant population-based metrics requires equally detailed information on the spatial distribution and attributes of the denominator populations. However, spatial information on age and sex composition over large areas is lacking, prompting many influential studies that have rigorously accounted for health risk heterogeneities to overlook the substantial demographic variations that exist subnationally and merely apply national-level adjustments.Here we outline the development of high resolution age- and sex-structured spatial population datasets for Africa in 2000-2015 built from over a million measurements from more than 20,000 subnational units, increasing input data detail from previous studies by over 400-fold. We analyze the large spatial variations seen within countries and across the continent for key MDG indicator groups, focusing on children under 5 and women of childbearing age, and find that substantial differences in health and development indicators can result through using only national level statistics, compared to accounting for subnational variation.Progress toward meeting the MDGs will be measured through national-level indicators that mask substantial inequalities and heterogeneities across nations. Cartographic approaches are providing opportunities for quantitative assessments of these inequalities and the targeting of interventions, but demographic spatial datasets to support such efforts remain reliant on coarse and outdated input data for accurately locating risk groups. We have shown here that sufficient data exist to map the distribution of key vulnerable groups, and that doing so has substantial impacts on derived metrics through accounting for spatial demographic heterogeneities that exist within nations across Africa.

15.
Appl Geogr ; 44: 23-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25152552

RESUMO

The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5-10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers.

16.
PLoS Negl Trop Dis ; 17(8): e0011597, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639440

RESUMO

BACKGROUND: The dynamics of the spread of cholera epidemics in the Democratic Republic of the Congo (DRC), from east to west and within western DRC, have been extensively studied. However, the drivers of these spread processes remain unclear. We therefore sought to better understand the factors associated with these spread dynamics and their potential underlying mechanisms. METHODS: In this eco-epidemiological study, we focused on the spread processes of cholera epidemics originating from the shores of Lake Kivu, involving the areas bordering Lake Kivu, the areas surrounding the lake areas, and the areas out of endemic eastern DRC (eastern and western non-endemic provinces). Over the period 2000-2018, we collected data on suspected cholera cases, and a set of several variables including types of conflicts, the number of internally displaced persons (IDPs), population density, transportation network density, and accessibility indicators. Using multivariate ordinal logistic regression models, we identified factors associated with the spread of cholera outside the endemic eastern DRC. We performed multivariate Vector Auto Regressive models to analyze potential underlying mechanisms involving the factors associated with these spread dynamics. Finally, we classified the affected health zones using hierarchical ascendant classification based on principal component analysis (PCA). FINDINGS: The increase in the number of suspected cholera cases, the exacerbation of conflict events, and the number of IDPs in eastern endemic areas were associated with an increased risk of cholera spreading outside the endemic eastern provinces. We found that the increase in suspected cholera cases was influenced by the increase in battles at lag of 4 weeks, which were influenced by the violence against civilians with a 1-week lag. The violent conflict events influenced the increase in the number of IDPs 4 to 6 weeks later. Other influences and uni- or bidirectional causal links were observed between violent and non-violent conflicts, and between conflicts and IDPs. Hierarchical clustering on PCA identified three categories of affected health zones: densely populated urban areas with few but large and longer epidemics; moderately and accessible areas with more but small epidemics; less populated and less accessible areas with more and larger epidemics. CONCLUSION: Our findings argue for monitoring conflict dynamics to predict the risk of geographic expansion of cholera in the DRC. They also suggest areas where interventions should be appropriately focused to build their resilience to the disease.


Assuntos
Cólera , Epidemias , Humanos , Cólera/epidemiologia , República Democrática do Congo/epidemiologia , Análise por Conglomerados , Estudos Epidemiológicos
17.
Geohealth ; 7(10): e2023GH000787, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37811342

RESUMO

Vector-borne diseases, such as malaria, are affected by the rapid urban growth and climate change in sub-Saharan Africa (SSA). In this context, intra-urban malaria risk maps act as a key decision-making tool for targeting malaria control interventions, especially in resource-limited settings. The Demographic and Health Surveys (DHS) provide a consistent malaria data source for mapping malaria risk at the national scale, but their use is limited at the intra-urban scale because survey cluster coordinates are randomly displaced for ethical reasons. In this research, we focus on predicting intra-urban malaria risk in SSA cities-Dakar, Dar es Salaam, Kampala and Ouagadougou-and investigate the use of spatial optimization methods to overcome the effect of DHS spatial displacement. We modeled malaria risk using a random forest regressor and remotely sensed covariates depicting the urban climate, the land cover and the land use, and we tested several spatial optimization approaches. The use of spatial optimization mitigated the effects of DHS spatial displacement on predictive performance. However, this comes at a higher computational cost, and the percentage of variance explained in our models remained low (around 30%-40%), which suggests that these methods cannot entirely overcome the limited quality of epidemiological data. Building on our results, we highlight potential adaptations to the DHS sampling strategy that would make them more reliable for predicting malaria risk at the intra-urban scale.

18.
Sci Total Environ ; 899: 165603, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474075

RESUMO

BACKGROUND: Wastewater-based epidemiology (WBE) has been implemented to monitor surges of COVID-19. Yet, multiple factors impede the usefulness of WBE and quantitative adjustment may be required. AIM: We aimed to model the relationship between WBE data and incident COVID-19 cases, while adjusting for confounders and autocorrelation. METHODS: This nationwide WBE study includes data from 40 wastewater treatment plants (WWTPs) in Belgium (02/2021-06/2022). We applied ARIMA-based modelling to assess the effect of daily flow rate, pepper mild mottle virus (PMMoV) concentration, a measure of human faeces in wastewater, and variants (alpha, delta, and omicron strains) on SARS-CoV-2 RNA levels in wastewater. Secondly, adjusted WBE metrics at different lag times were used to predict incident COVID-19 cases. Model selection was based on AICc minimization. RESULTS: In 33/40 WWTPs, RNA levels were best explained by incident cases, flow rate, and PMMoV. Flow rate and PMMoV were associated with -13.0 % (95 % prediction interval: -26.1 to +0.2 %) and +13.0 % (95 % prediction interval: +5.1 to +21.0 %) change in RNA levels per SD increase, respectively. In 38/40 WWTPs, variants did not explain variability in RNA levels independent of cases. Furthermore, our study shows that RNA levels can lead incident cases by at least one week in 15/40 WWTPs. The median population size of leading WWTPs was 85.1 % larger than that of non­leading WWTPs. In 17/40 WWTPs, however, RNA levels did not lead or explain incident cases in addition to autocorrelation. CONCLUSION: This study provides quantitative insights into key determinants of WBE, including the effects of wastewater flow rate, PMMoV, and variants. Substantial inter-WWTP variability was observed in terms of explaining incident cases. These findings are of practical importance to WBE practitioners and show that the early-warning potential of WBE is WWTP-specific and needs validation.


Assuntos
COVID-19 , RNA Viral , Humanos , Fatores de Tempo , Bélgica/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , SARS-CoV-2
19.
Popul Health Metr ; 10(1): 8, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22591595

RESUMO

The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models.Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites.In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA