RESUMO
BACKGROUND: Epilepsy is a prevalent neurological disease, affecting approximately 1-2% of the global population. The hallmark of epilepsy is the occurrence of epileptic seizures, which are characterized by predictable behavioral changes reflecting the underlying neural mechanisms of the disease. Unfortunately, around 30% of patients do not respond to current pharmacological treatments. Consequently, exploring alternative therapeutic options for managing this condition is crucial. Two potential candidates for attenuating seizures are N-acetylcysteine (NAC) and Acetyl-L-carnitine (ALC), as they have shown promising neuroprotective effects through the modulation of glutamatergic neurotransmission. METHODS: This study aimed to assess the effects of varying concentrations (0.1, 1.0, and 10 mg/L) of NAC and ALC on acute PTZ-induced seizures in zebrafish in both adult and larval stages. The evaluation of behavioral parameters such as seizure intensity and latency to the crisis can provide insights into the efficacy of these substances. RESULTS: Our results indicate that both drugs at any of the tested concentrations were not able to reduce PTZ-induced epileptic seizures. On the other hand, the administration of diazepam demonstrated a notable reduction in seizure intensity and increased latencies to higher scores of epileptic seizures. CONCLUSION: Consequently, we conclude that, under the conditions employed in this study, NAC and ALC do not exhibit any significant effects on acute seizures in zebrafish.
Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Adulto , Acetilcisteína/uso terapêutico , Acetilcarnitina/efeitos adversos , Larva , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Modelos Animais de DoençasRESUMO
BACKGROUND: Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), presents neuroprotective properties and can modulate neuronal pathways related to mental disorders. However, curcumin has low bioavailability, which can compromise its use. The micronization process can reduce mean particle diameter and improve this compound's bioavailability and therapeutic potential. METHODS: We compared the behavioral (open tank test, OTT) and neurochemical (thiobarbituric acid reactive substances (TBARS) and non-protein thiols (NPSH) levels) effects of non-micronized curcumin (CUR, 10 mg/kg, ip) and micronized curcumin (MC, 10 mg/kg, ip) in adult zebrafish subjected to a 90-min acute restraint stress (ARS) protocol. RESULTS: ARS increased the time spent in the central area and the number of crossings and decreased the immobility time of the animals in the OTT. These results suggest an increase in locomotor activity and a decrease in thigmotaxis behavior. Both CUR and MC were not able to prevent these effects. Furthermore, ARS also induced oxidative damage by increasing TBARS and decreasing NPSH levels. Both CUR and MC did not prevent these effects. CONCLUSION: ARS-induced behavioral and biochemical effects were not blocked by any curcumin preparation. Therefore, we conclude that curcumin does not have acute anti-stress effects in zebrafish.
Assuntos
Curcumina , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico , Peixe-ZebraRESUMO
Mitochondria play key roles in brain metabolism. Not surprisingly, mitochondria dysfunction is a ubiquitous cause of neurodegenerative diseases. In turn, acquired forms of epilepsy etiology is specifically intriguing since mitochondria function and dysfunction remain not completely enlightened. Investigation in the field includes models of epileptic disorder using mainly rodents followed by mitochondrial function evaluation, which in general evidenced controversial data. So, we considered the efforts and limitations in this research field and we took into account that sample preparation and quality are critical for bioenergetics investigation. For these reasons the aim of the present study was to develop a thorough protocol for adult zebrafish brain-tissue dissociation to evaluate oxygen consumption flux and reach the bioenergetics profile in health and models of epileptic disorder in both, in vitro using pentylenetetrazole (PTZ) and N-methyl-D-Aspartic acid (NMDA), and in vivo after kainic acid (KA)-induced status epilepticus. In conclusion, we verify that fire-polished glass Pasteur pipette is eligible to brain-tissue dissociation and to study mitochondrial function and dysfunction in adult zebrafish. The results give evidence for large effect size in increase of coupling efficiency respiration (p/O2) correlated to treatment with PTZ and spare respiratory capacity (SRC) in KA-induced model indicating oxidative phosphorylation (OXPHOS) variable alterations. Further investigation is needed in order to clarify the bioenergetics role as well as other mitochondrial functions in epilepsy.