Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642106

RESUMO

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Dedos/fisiologia , Percepção do Tato/fisiologia , Mãos/fisiologia , Eletroencefalografia , Córtex Somatossensorial
2.
BMC Psychiatry ; 23(1): 860, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990173

RESUMO

BACKGROUND: Quantitative electroencephalography (EEG) analysis offers the opportunity to study high-level cognitive processes across psychiatric disorders. In particular, EEG microstates translate the temporal dynamics of neuronal networks throughout the brain. Their alteration may reflect transdiagnostic anomalies in neurophysiological functions that are impaired in mood, psychosis, and autism spectrum disorders, such as sensorimotor integration, speech, sleep, and sense of self. The main questions this study aims to answer are as follows: 1) Are EEG microstate anomalies associated with clinical and functional prognosis, both in resting conditions and during sleep, across psychiatric disorders? 2) Are EEG microstate anomalies associated with differences in sensorimotor integration, speech, sense of self, and sleep? 3) Can the dynamic of EEG microstates be modulated by a non-drug intervention such as light hypnosis? METHODS: This prospective cohort will include a population of adolescents and young adults, aged 15 to 30 years old, with ultra-high-risk of psychosis (UHR), first-episode psychosis (FEP), schizophrenia (SCZ), autism spectrum disorder (ASD), and major depressive disorder (MDD), as well as healthy controls (CTRL) (N = 21 × 6), who will be assessed at baseline and after one year of follow-up. Participants will undergo deep phenotyping based on psychopathology, neuropsychological assessments, 64-channel EEG recordings, and biological sampling at the two timepoints. At baseline, the EEG recording will also be coupled to a sensorimotor task and a recording of the characteristics of their speech (prosody and turn-taking), a one-night polysomnography, a self-reference effect task in virtual reality (only in UHR, FEP, and CTRL). An interventional ancillary study will involve only healthy controls, in order to assess whether light hypnosis can modify the EEG microstate architecture in a direction opposite to what is seen in disease. DISCUSSION: This transdiagnostic longitudinal case-control study will provide a multimodal neurophysiological assessment of clinical dimensions (sensorimotor integration, speech, sleep, and sense of self) that are disrupted across mood, psychosis, and autism spectrum disorders. It will further test the relevance of EEG microstates as dimensional functional biomarkers. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT06045897.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno Depressivo Maior , Transtornos Psicóticos , Adulto Jovem , Adolescente , Humanos , Adulto , Transtorno Autístico/diagnóstico , Transtorno do Espectro Autista/diagnóstico , Vigília , Estudos de Casos e Controles , Depressão , Encéfalo , Sono , Eletroencefalografia/métodos
3.
J Neuroeng Rehabil ; 20(1): 93, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464404

RESUMO

OBJECTIVE: To compare the efficacy of Dextrain Manipulandum™ training of dexterity components such as force control and independent finger movements, to dose-matched conventional therapy (CT) post-stroke. METHODS: A prospective, single-blind, pilot randomized clinical trial was conducted. Chronic-phase post-stroke patients with mild-to-moderate dexterity impairment (Box and Block Test (BBT) > 1) received 12 sessions of Dextrain or CT. Blinded measures were obtained before and after training and at 3-months follow-up. Primary outcome was BBT-change (after-before training). Secondary outcomes included changes in motor impairments, activity limitations and dexterity components. Corticospinal excitability and short intracortical inhibition (SICI) were measured using transcranial magnetic stimulation. RESULTS: BBT-change after training did not differ between the Dextrain (N = 21) vs CT group (N = 21) (median [IQR] = 5[2-7] vs 4[2-7], respectively; P = 0.36). Gains in BBT were maintained at the 3-month post-training follow-up, with a non-significant trend for enhanced BBT-change in the Dextrain group (median [IQR] = 3[- 1-7.0], P = 0.06). Several secondary outcomes showed significantly larger changes in the Dextrain group: finger tracking precision (mean ± SD = 0.3 ± 0.3N vs - 0.1 ± 0.33N; P < 0.0018), independent finger movements (34.7 ± 25.1 ms vs 7.7 ± 18.5 ms, P = 0.02) and maximal finger tapping speed (8.4 ± 7.1 vs 4.5 ± 4.9, P = 0.045). At follow-up, Dextrain group showed significantly greater improvement in Motor Activity Log (median/IQR = 0.7/0.2-0.8 vs 0.2/0.1-0.6, P = 0.05). Across both groups SICI increased in patients with greater BBT-change (Rho = 0.80, P = 0.006). Comparing Dextrain subgroups with maximal grip force higher/lower than median (61.2%), BBT-change was significantly larger in patients with low vs high grip force (7.5 ± 5.6 vs 2.9 ± 2.8; respectively, P = 0.015). CONCLUSIONS: Although immediate improvements in gross dexterity post-stroke did not significantly differ between Dextrain training and CT, our findings suggest that Dextrain enhances recovery of several dexterity components and reported hand-use, particularly when motor impairment is moderate (low initial grip force). Findings need to be confirmed in a larger trial. Trial registration ClinicalTrials.gov NCT03934073 (retrospectively registered).


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Método Simples-Cego , Estudos Prospectivos , Recuperação de Função Fisiológica , Resultado do Tratamento , Acidente Vascular Cerebral/complicações , Extremidade Superior
4.
J Neuroeng Rehabil ; 19(1): 35, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331273

RESUMO

BACKGROUND: We developed five tablet-based tasks (applications) to measure multiple components of manual dexterity. AIM: to test reliability and validity of tablet-based dexterity measures in healthy participants. METHODS: Tasks included: (1) Finger recognition to assess mental rotation capacity. The subject taps with the finger indicated on a virtual hand in three orientations (reaction time, correct trials). (2) Rhythm tapping to evaluate timing of finger movements performed with, and subsequently without, an auditory cue (inter-stimulus interval). (3) Multi-finger tapping to assess independent finger movements (reaction time, correct trials, unwanted finger movements). (4) Sequence tapping to assess production and memorization of visually cued finger sequences (successful taps). (5) Line-tracking to assess movement speed and accuracy while tracking an unpredictably moving line on the screen with the fingertip (duration, error). To study inter-rater reliability, 34 healthy subjects (mean age 35 years) performed the tablet tasks twice with two raters. Relative reliability (Intra-class correlation, ICC) and absolute reliability (Standard error of measurement, SEM) were established. Task validity was evaluated in 54 healthy subjects (mean age 49 years, range: 20-78 years) by correlating tablet measures with age, clinical dexterity assessments (time taken to pick-up objects in Box and Block Test, BBT and Moberg Pick Up Test, MPUT) and with measures obtained using a finger force-sensor device. RESULTS: Most timing measures showed excellent reliability. Poor to excellent reliability was found for correct trials across tasks, and reliability was poor for unwanted movements. Inter-session learning occurred in some measures. Age correlated with slower and more variable reaction times in finger recognition, less correct trials in multi-finger tapping, and slower line-tracking. Reaction times correlated with those obtained using a finger force-sensor device. No significant correlations between tablet measures and BBT or MPUT were found. Inter-task correlation among tablet-derived measures was weak. CONCLUSIONS: Most tablet-based dexterity measures showed good-to-excellent reliability (ICC ≥ 0.60) except for unwanted movements during multi-finger tapping. Age-related decline in performance and association with finger force-sensor measures support validity of tablet measures. Tablet-based components of dexterity complement conventional clinical dexterity assessments. Future work is required to establish measurement properties in patients with neurological and psychiatric disorders.


Assuntos
Acidente Vascular Cerebral , Adulto , Mãos , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Extremidade Superior
5.
Stroke ; 51(3): 944-951, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31906829

RESUMO

Background and Purpose- Dexterous object manipulation, requiring generation and control of finger forces, is often impaired after stroke. This study aimed to describe recovery of precision grip force control after stroke and to determine clinical and imaging predictors of 6-month performance. Methods- Eighty first-ever stroke patients with varying degrees of upper limb weakness were evaluated at 3 weeks, 3 months, and 6 months after stroke. Twenty-three healthy individuals of comparable age were also studied. The Strength-Dexterity test was used to quantify index finger and thumb forces during compression of springs of varying length in a precision grip. The coordination between finger forces (CorrForce), along with Dexterity-score and Repeatability-score, was calculated. Anatomical magnetic resonance imaging was used to calculate weighted corticospinal tract lesion load (wCST-LL). Results- CorrForce, Dexterity-score, and Repeatability-score in the affected hand were dramatically lower at each time point compared with the less-affected hand and the control group, even in patients with mild motor impairment according to Fugl-Meyer assessment. Improved performance over time occurred in CorrForce and Dexterity-score but not in Repeatability-score. The Fugl-Meyer assessment hand subscale, sensory function, and wCST-LL best predicted CorrForce and Dexterity-score status at 6 months (R2=0.56 and 0.87, respectively). wCST-LL explained substantial variance in CorrForce (R2=0.34) and Dexterity-score (R2=0.50) at 6 months; two-point discrimination and Fugl-Meyer score accounted for considerable additional variance. Absence of recovery in CorrForce was predicted by wCST-LL >4 cc and in Dexterity-score by wCST-LL >6 cc. Conclusions- Findings highlight persisting deficits in the ability to grasp and control finger forces after stroke. wCST-LL was the strongest predictor of performance at 6 months, but early two-point discrimination and Fugl-Meyer score had substantial additional predictive value. Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT02878304.


Assuntos
Força da Mão , Acidente Vascular Cerebral/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polegar/fisiopatologia , Fatores de Tempo
6.
Brain ; 142(7): 2149-2164, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31099820

RESUMO

Impairments in attentional, working memory and sensorimotor processing have been consistently reported in schizophrenia. However, the interaction between cognitive and sensorimotor impairments and the underlying neural mechanisms remains largely uncharted. We hypothesized that altered attentional processing in patients with schizophrenia, probed through saccadic inhibition, would partly explain impaired sensorimotor control and would be reflected as altered task-dependent modulation of cortical excitability and inhibition. Twenty-five stabilized patients with schizophrenia, 17 unaffected siblings and 25 healthy control subjects were recruited. Subjects performed visuomotor grip force-tracking alone (single-task condition) and with increased cognitive load (dual-task condition). In the dual-task condition, two types of trials were randomly presented: trials with visual distractors (requiring inhibition of saccades) or trials with addition of numbers (requiring saccades and addition). Both dual-task trial types required divided visual attention to the force-tracking target and to the distractor or number. Gaze was measured during force-tracking tasks, and task-dependent modulation of cortical excitability and inhibition were assessed using transcranial magnetic stimulation. In the single-task, patients with schizophrenia showed increased force-tracking error. In dual-task distraction trials, force-tracking error increased further in patients, but not in the other two groups. Patients inhibited fewer saccades to distractors, and the capacity to inhibit saccades explained group differences in force-tracking performance. Cortical excitability at rest was not different between groups and increased for all groups during single-task force-tracking, although, to a greater extent in patients (80%) compared to controls (40%). Compared to single-task force-tracking, the dual-task increased cortical excitability in control subjects, whereas patients showed decreased excitability. Again, the group differences in cortical excitability were no longer significant when failure to inhibit saccades was included as a covariate. Cortical inhibition was reduced in patients in all conditions, and only healthy controls increased inhibition in the dual-task. Siblings had similar force-tracking and gaze performance as controls but showed altered task-related modulation of cortical excitability and inhibition in dual-task conditions. In patients, neuropsychological scores of attention correlated with visuomotor performance and with task-dependant modulation of cortical excitability. Disorganization symptoms were greatest in patients with weakest task-dependent modulation of cortical excitability. This study provides insights into neurobiological mechanisms of impaired sensorimotor control in schizophrenia showing that deficient divided visual attention contributes to impaired visuomotor performance and is reflected in impaired modulation of cortical excitability and inhibition. In siblings, altered modulation of cortical excitability and inhibition is consistent with a genetic risk for cortical abnormality.


Assuntos
Atenção/fisiologia , Excitabilidade Cortical/fisiologia , Inibição Neural/fisiologia , Desempenho Psicomotor/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Movimentos Sacádicos/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
7.
Eur Radiol ; 26(3): 733-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26123409

RESUMO

OBJECTIVES: The aim of this study was to investigate spinal cord structure in patients with cervical spondylosis where conventional MRI fails to reveal spinal cord damage. METHODS: We performed a cross-sectional study of patients with cervical spondylosis without conventional MRI findings of spinal cord damage and healthy controls. Subjects were studied using spinal diffusion tensor imaging (DTI), precision grip and foot force-tracking tasks, and a clinical examination including assessment of neurological signs. A regional analysis of lateral and medial spinal white matter across multiple cervical levels (C1-C5) was performed. RESULTS: DTI revealed reduced fractional anisotropy (FA) and increased radial diffusivity (RD) in the lateral spinal cord at the level of greatest compression (lowest Pavlov ratio) in patients (p < 0.05). Patients with spondylosis had greater error and longer release duration in both grip and foot force-tracking. Similar spinal cord deficits were present in patients without neurological signs. Increased error in grip and foot tracking (low accuracy) correlated with increased RD in the lateral spinal cord at the level of greatest compression (p ≤ 0.01). CONCLUSIONS: Spinal DTI can detect subtle spinal cord damage of functional relevance in cervical spondylosis, even in patients without signs on conventional T2-imaging and without neurological signs. KEY POINTS: DTI reveals spinal cord changes in cervical spondylosis with few symptoms. DTI changes were present despite normal spinal cord on conventional MRI. DTI parameters correlated with force control accuracy in hand and foot. Spinal DTI is a promising technique for patients with cervical spondylosis.


Assuntos
Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Medula Espinal/patologia , Espondilose/patologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Neuroeng Rehabil ; 13: 30, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987557

RESUMO

BACKGROUND AND OBJECTIVE: The NeuroFlexor is a novel instrument for quantification of neural, viscous and elastic components of passive movement resistance. The aim of this study was to provide normative data and cut-off values from healthy subjects and to use these to explore signs of spasticity at the wrist and fingers in patients recovering from stroke. METHODS: 107 healthy subjects (age range 28-68 years; 51 % females) and 39 stroke patients (age range 33-69 years; 33 % females), 2-4 weeks after stroke, were assessed with the NeuroFlexor. Cut-off values based on mean + 3SD of the reference data were calculated. In patients, the modified Ashworth scale (MAS) was also applied. RESULTS: In healthy subjects, neural component was 0.8 ± 0.9 N (mean ± SD), elastic component was 2.7 ± 1.1 N, viscous component was 0.3 ± 0.3 N and resting tension was 5.9 ± 1 N. Age only correlated with elastic component (r = -0.3, p = 0.01). Elasticity and resting tension were higher in males compared to females (p = 0.001) and both correlated positively with height (p = 0.01). Values above healthy population cut-off were observed in 16 patients (41 %) for neural component, in 2 (5 %) for elastic component and in 23 (59 %) for viscous component. Neural component above cut-off did not correspond well to MAS ratings. Ten patients with MAS = 0 had neural component values above cut-off and five patients with MAS ≥ 1 had neural component within normal range. CONCLUSION: This study provides NeuroFlexor cut-off values that are useful for detection of spasticity in the early phase after stroke.


Assuntos
Acelerometria/instrumentação , Espasticidade Muscular/diagnóstico , Acidente Vascular Cerebral/complicações , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Espasticidade Muscular/etiologia
9.
J Neuroeng Rehabil ; 12: 64, 2015 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-26233571

RESUMO

BACKGROUND: A high degree of manual dexterity is a central feature of the human upper limb. A rich interplay of sensory and motor components in the hand and fingers allows for independent control of fingers in terms of timing, kinematics and force. Stroke often leads to impaired hand function and decreased manual dexterity, limiting activities of daily living and impacting quality of life. Clinically, there is a lack of quantitative multi-dimensional measures of manual dexterity. We therefore developed the Finger Force Manipulandum (FFM), which allows quantification of key components of manual dexterity. The purpose of this study was (i) to test the feasibility of using the FFM to measure key components of manual dexterity in hemiparetic stroke patients, (ii) to compare differences in dexterity components between stroke patients and controls, and (iii) to describe individual profiles of dexterity components in stroke patients. METHODS: 10 stroke patients with mild-to-moderate hemiparesis and 10 healthy subjects were recruited. Clinical measures of hand function included the Action Research Arm Test and the Moberg Pick-Up Test. Four FFM tasks were used: (1) Finger Force Tracking to measure force control, (2) Sequential Finger Tapping to measure the ability to perform motor sequences, (3) Single Finger Tapping to measure timing effects, and (4) Multi-Finger Tapping to measure the ability to selectively move fingers in specified combinations (independence of finger movements). RESULTS: Most stroke patients could perform the tracking task, as well as the single and multi-finger tapping tasks. However, only four patients performed the sequence task. Patients showed less accurate force control, reduced tapping rate, and reduced independence of finger movements compared to controls. Unwanted (erroneous) finger taps and overflow to non-tapping fingers were increased in patients. Dexterity components were not systematically related among each other, resulting in individually different profiles of deficient dexterity. Some of the FFM measures correlated with clinical scores. CONCLUSIONS: Quantifying some of the key components of manual dexterity with the FFM is feasible in moderately affected hemiparetic patients. The FFM can detect group differences and individual profiles of deficient dexterity. The FFM is a promising tool for the measurement of key components of manual dexterity after stroke and could allow improved targeting of motor rehabilitation.


Assuntos
Destreza Motora , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Braço/fisiopatologia , Feminino , Dedos/fisiopatologia , Mãos/fisiopatologia , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Paresia/fisiopatologia , Paresia/reabilitação , Desempenho Psicomotor
10.
Mov Disord ; 29(1): 130-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123136

RESUMO

BACKGROUND: Abnormal cortical processing of sensory inputs has been found bilaterally in writer's cramp (WC). This study tested the hypothesis that patients with WC have an impaired ability to adjust grip forces according to visual and somatosensory cues in both hands. METHODS: A unimanual visuomotor force-tracking task and a bimanual sense of effort force-matching task were performed by WC patients and healthy controls. RESULTS: In visuomotor tracking, WC patients showed increased error, greater variability, and longer release duration than controls. In the force-matching task, patients underestimated, whereas controls overestimated, the force applied in the other hand. Visuomotor tracking and force matching were equally impaired in both the symptomatic and nonsymptomatic hand in WC patients. CONCLUSIONS: This study provides evidence of bilaterally impaired grip-force control in WC, when using visual or sense of effort cues. This suggests a generalized subclinical deficit in sensorimotor integration in WC.


Assuntos
Distúrbios Distônicos/fisiopatologia , Força da Mão/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Cortex ; 177: 68-83, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38838560

RESUMO

Stroke often causes long-term motor and somatosensory impairments. Motor planning and tactile perception rely on spatial body representations. However, the link between altered spatial body representations, motor deficit and tactile spatial coding remains unclear. This study investigates the relationship between motor deficits and alterations of anatomical (body) and tactile spatial representations of the hand in 20 post-stroke patients with upper limb hemiparesis. Anatomical and tactile spatial representations were assessed from 10 targets (nails and knuckles) respectively cued verbally by their anatomical name or using tactile stimulations. Two distance metrics (hand width and finger length) and two structural measures (relative organization of targets positions and angular deviation of fingers from their physical posture) were computed and compared to clinical assessments, normative data and lesions sites. Over half of the patients had altered anatomical and/or tactile spatial representations. Metrics of tactile and anatomical representations showed common variations, where a wider hand representation was linked to more severe motor deficits. In contrast, alterations in structural measures were not concomitantly observed in tactile and anatomical representations and did not correlate with clinical assessments. Finally, a preliminary analysis showed that specific alterations in tactile structural measures were associated with dorsolateral prefrontal stroke lesions. This study reveals shared and distinct characteristics of anatomical and tactile hand spatial representations, reflecting different mechanisms that can be affected differently after stroke: metrics and location of tactile and anatomical representations were partially shared while the structural measures of tactile and anatomical representations had distinct characteristics.

12.
Neurorehabil Neural Repair ; 38(5): 373-385, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572686

RESUMO

BACKGROUND: Knowing how impaired manual dexterity and finger proprioception affect upper limb activity capacity is important for delineating targeted post-stroke interventions for upper limb recovery. OBJECTIVES: To investigate whether impaired manual dexterity and finger proprioception explain variance in post-stroke activity capacity, and whether they explain more variance than conventional clinical assessments of upper limb sensorimotor impairments. METHODS: Activity capacity and hand sensorimotor impairments were assessed using clinical measures in N = 42 late subacute/chronic hemiparetic stroke patients. Dexterity was evaluated using the Dextrain Manipulandum to quantify accuracy of visuomotor finger force-tracking (N = 36), timing of rhythmic tapping (N = 36), and finger individuation (N = 24), as well as proprioception (N = 27). Stepwise multivariate and hierarchical linear regression models were used to identify impairments best explaining activity capacity. RESULTS: Dexterity and proprioceptive components significantly increased the variance explained in activity capacity: (i) Box and Block Test was best explained by baseline tonic force during force-tracking and tapping frequency (adjusted R2 = .51); (ii) Motor Activity Log was best explained by success rate in finger individuation (adjusted R2 = .46); (iii) Action Research Arm Test was best explained by release of finger force and proprioceptive measures (improved reaction time related to use of proprioception; adjusted R2 = .52); and (iv) Moberg Pick-Up test was best explained by proprioceptive function (adjusted R2 = .18). Models excluding dexterity and proprioception variables explained up to 19% less variance. CONCLUSIONS: Manual dexterity and finger proprioception explain unique variance in activity capacity not captured by conventional impairment measures and should be assessed when considering the underlying causes of post-stroke activity capacity limitations.URL: https://www.clinicaltrials.gov. Unique identifier: NCT03934073.


Assuntos
Dedos , Propriocepção , Acidente Vascular Cerebral , Extremidade Superior , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dedos/fisiopatologia , Dedos/fisiologia , Atividade Motora/fisiologia , Destreza Motora/fisiologia , Paresia/fisiopatologia , Paresia/etiologia , Propriocepção/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Extremidade Superior/fisiopatologia
13.
Eur Radiol ; 23(11): 3115-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979105

RESUMO

OBJECTIVES: To investigate median nerve structure in patients with recurrent carpal tunnel syndrome (CTS) using diffusion tensor imaging (DTI) and to relate DTI changes to anatomical MRI and to measures of median nerve function. METHODS: Median nerve structure was quantified according to DTI in patients with recurrent CTS and in healthy controls of similar age. Anatomical MRI was used to identify the presence of nerve compression and fibrosis. Median nerve function was measured using electromyography, a force-tracking task (accuracy of precision grip control) and clinical measures. RESULTS: Patients showed reduced apparent diffusion coefficient (ADC), reduced axial diffusivity (AD) and radial diffusivity (RD) along the median nerve compared with controls (P < 0.001). Patients with endoneural fibrosis had the greatest reductions in ADC and in RD. ADC and AD correlated positively with nerve conduction velocity (R = 0.54 and R = 0.68, respectively) and fractional anisotropy correlated negatively with error during force-tracking (R = -0.58). CONCLUSIONS: A specific pattern of DTI changes in the median nerve was identified in patients with recurrent CTS. Fibrosis may be underlying these structural changes. The correlations with nerve conduction velocity and accuracy of force control suggest that DTI is a promising technique in the study of median nerve structure in recurrent CTS. KEY POINTS: • Diffusion tensor imaging (DTI) offers further possibilities in musculoskeletal magnetic resonance imaging. • DTI reveals median nerve changes in recurrent carpal tunnel syndrome. • DTI changes were greater with signs of median nerve fibrosis. • DTI parameters correlated with nerve conduction and force control measures. • DTI is a promising technique in recurrent carpal tunnel syndrome.


Assuntos
Síndrome do Túnel Carpal/diagnóstico , Imagem de Tensor de Difusão/métodos , Nervo Mediano/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Reprodutibilidade dos Testes
14.
J Rehabil Med ; 55: jrm00356, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867093

RESUMO

OBJECTIVE: Quantification of lower limb spasticity after stroke and the differentiation of neural from passive muscle resistance remain key clinical challenges. The aim of this study was to validate the novel NeuroFlexor foot module, to assess the intrarater reliability of measurements and to identify normative cut-off values. METHODS: Fifteen patients with chronic stroke with clinical history of spasticity and 18 healthy subjects were examined with the NeuroFlexor foot module at controlled velocities. Elastic, viscous and neural components of passive dorsiflexion resistance were quantified (in Newton, N). The neural component, reflecting stretch reflex mediated resistance, was validated against electromyography activity. A test-retest design with a 2-way random effects model permitted study of intra-rater reliability. Finally, data from 73 healthy subjects were used to establish cutoff values according to mean + 3 standard deviations and receiver operating characteristic curve analysis. RESULTS: The neural component was higher in stroke patients, increased with stretch velocity and correlated with electromyography amplitude. Reliability was high for the neural component (intraclass correlation coefficient model 2.1 (ICC2,1) ≥ 0.903) and good for the elastic component (ICC2,1 ≥ 0.898). Cutoff values were identified, and all patients with neural component above the limit presented pathological electromyography amplitude (area under the curve (AUC) = 1.00, sensitivity = 100%, specificity = 100%). CONCLUSION: The NeuroFlexor may offer a clinically feasible and non-invasive way to objectively quantify lower limb spasticity.


Assuntos
Tornozelo , Acidente Vascular Cerebral , Humanos , Reprodutibilidade dos Testes , Articulação do Tornozelo , Extremidade Inferior , Espasticidade Muscular
15.
Front Psychiatry ; 14: 1200864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435404

RESUMO

Background: We performed a pilot study on whether tablet-based measures of manual dexterity can provide behavioral markers for detection of first-episode psychosis (FEP), and whether cortical excitability/inhibition was altered in FEP. Methods: Behavioral and neurophysiological testing was undertaken in persons diagnosed with FEP (N = 20), schizophrenia (SCZ, N = 20), autism spectrum disorder (ASD, N = 20), and in healthy control subjects (N = 20). Five tablet tasks assessed different motor and cognitive functions: Finger Recognition for effector (finger) selection and mental rotation, Rhythm Tapping for temporal control, Sequence Tapping for control/memorization of motor sequences, Multi Finger Tapping for finger individuation, and Line Tracking for visuomotor control. Discrimination of FEP (from other groups) based on tablet-based measures was compared to discrimination through clinical neurological soft signs (NSS). Cortical excitability/inhibition, and cerebellar brain inhibition were assessed with transcranial magnetic stimulation. Results: Compared to controls, FEP patients showed slower reaction times and higher errors in Finger Recognition, and more variability in Rhythm Tapping. Variability in Rhythm Tapping showed highest specificity for the identification of FEP patients compared to all other groups (FEP vs. ASD/SCZ/Controls; 75% sensitivity, 90% specificity, AUC = 0.83) compared to clinical NSS (95% sensitivity, 22% specificity, AUC = 0.49). Random Forest analysis confirmed FEP discrimination vs. other groups based on dexterity variables (100% sensitivity, 85% specificity, balanced accuracy = 92%). The FEP group had reduced short-latency intra-cortical inhibition (but similar excitability) compared to controls, SCZ, and ASD. Cerebellar inhibition showed a non-significant tendency to be weaker in FEP. Conclusion: FEP patients show a distinctive pattern of dexterity impairments and weaker cortical inhibition. Easy-to-use tablet-based measures of manual dexterity capture neurological deficits in FEP and are promising markers for detection of FEP in clinical practice.

16.
Front Neurol ; 13: 1013652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530630

RESUMO

Objective: The cerebral substrates of apraxia of speech (AOS) recovery remain unclear. Resting state fMRI post stroke can inform on altered functional connectivity (FC) within cortical language networks. Some initial studies report reduced FC between bilateral premotor cortices in patients with AOS, with lowest FC in patients with the most severe AOS. However, longitudinal FC studies in stroke are lacking. The aims of the present longitudinal study in early post stroke patients with AOS were (i) to compare connectivity strength in AOS patients to that in left hemisphere (LH) lesioned stroke patients without a speech-language impairment, (ii) to investigate the relation between FC and severity of AOS, aphasia and non-verbal oral apraxia (NVOA) and (iii) to investigate longitudinal changes in FC, from the subacute phase to the chronic phase to identify predictors of AOS recovery. Methods: Functional connectivity measures and comprehensive speech-language assessments were obtained at 4 weeks and 6 months after stroke in nine patients with AOS after a LH stroke and in six LH lesioned stroke patients without speech-language impairment. Functional connectivity was investigated in a network for speech production: inferior frontal gyrus (IFG), anterior insula (aINS), and ventral premotor cortex (vPMC), all bilaterally to investigate signs of adaptive or maladaptive changes in both hemispheres. Results: Interhemispheric vPMC connectivity was significantly reduced in patients with AOS compared to LH lesioned patients without speech-language impairment. At 6 months, the AOS severity was associated with interhemispheric aINS and vPMC connectivity. Longitudinal changes in FC were found in individuals, whereas no significant longitudinal change in FC was found at the group level. Degree of longitudinal AOS recovery was strongly associated with interhemispheric IFG connectivity strength at 4 weeks. Conclusion: Early interhemispheric IFG connectivity may be a strong predictor of AOS recovery. The results support the importance of interhemispheric vPMC connection in speech motor planning and severity of AOS and suggest that also bilateral aINS connectivity may have an impact on AOS severity. These findings need to be validated in larger cohorts.

17.
Cortex ; 146: 173-185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883309

RESUMO

Perception and action are based on cerebral spatial representations of the body and the external world. However, spatial representations differ from the physical characteristics of body and external space (e.g., objects). It remains unclear whether these discrepancies are related to functional requirements of action and are shared between different spatial representations, indicating common brain processes. We hypothesized that distortions of spatial hand representation would be affected by age, sensorimotor practice and external space representation. We assessed hand representations using tactile and verbal localization tasks and quantified object representation in three age groups (20-79 yrs, total n = 60). Our results show significant shrinking of spatial hand representations (hand width) with age, unrelated to sensorimotor functions. No such shrinking occurred in spatial object representations despite some common characteristics with hand representations. Therefore, spatial properties of body representation partially share characteristics of object representation but also evolve independently across the lifespan.


Assuntos
Longevidade , Percepção do Tato , Adulto , Idoso , Imagem Corporal , Mãos , Humanos , Pessoa de Meia-Idade , Percepção Espacial , Tato , Adulto Jovem
18.
Neurophysiol Clin ; 52(5): 354-365, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35945093

RESUMO

OBJECTIVES: The role of the cerebellum in motor learning of dexterous control and interaction with aging remains incompletely understood. We compared the effect of age and cerebellar transcranial direct current stimulation (CRB-tDCS) on motor learning in two different manual dexterity tasks, visuomotor force control vs. effector selection (independent finger movements). METHODS: Twenty younger and 20 older adults were randomized (double-blinded) to anodal or sham CRB-tDCS during dexterity training over three consecutive days, and followed-up at day 10. Motor learning was measured as (i) overall learning (across 10 days), (ii) within-day (short-term) learning, (iii) between-day learning (consolidation), and (iv) retention (long-term learning; day 3 to day 10). RESULTS: Younger and older subjects showed significant overall learning in both tasks. Subjects with poor initial performance showed stronger learning. No effects of CRB-tDCS were observed in younger adults. A significant Age*CRB-tDCS interaction showed that CRB-tDCS improved within-day learning in finger independence (improved reaction time in effector selection) in older adults. However, a significant Age*CRB-tDCS interaction showed that CRB-tDCS impacted consolidation negatively in older subjects. No stimulation effects were found on retention. Finally, we found that degree of within-day learning in finger independence (change in reaction times) correlated with baseline (pre-training) reaction times in both young and old subjects. DISCUSSION: The results suggest that CRB-tDCS may improve short-term learning of manual dexterity in older adults in a task-dependent manner, specifically in difficult tasks requiring effector (action) selection. However, cerebellar tDCS stimulation may also interfere with consolidation in older subjects. These results need confirmation in a larger sample.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Cerebelo/fisiologia , Aprendizagem/fisiologia , Dedos , Movimento
19.
Brain Commun ; 4(5): fcac241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262369

RESUMO

Recovery of dexterous hand use is critical for functional outcome after stroke. Grip force recordings can inform on maximal motor output and modulatory and inhibitory cerebral functions, but how these actually contribute to recovery of dexterous hand use is unclear. This cohort study used serially assessed measures of hand kinetics to test the hypothesis that behavioural measures of motor modulation and inhibition explain dexterity recovery beyond that explained by measures of motor output alone. We also investigated the structural and functional connectivity correlates of grip force control recovery. Eighty-nine adults (median age = 54 years, 26% females) with first-ever ischaemic or haemorrhagic stroke and persistent arm and hand paresis were assessed longitudinally, at 3 weeks, and at 3 and 6 months after stroke. Kinetic measures included: maximal grip force, accuracy of precision and power grip force control, and ability to release force abruptly. Dexterous hand use was assessed clinically with the Box and Block Test and motor impairment with the upper extremity Fugl-Meyer Assessment. Structural and functional MRI was used to assess weighted corticospinal tract lesion load, voxel-based lesion symptom mapping and interhemispheric resting-state functional connectivity. Fifty-three per cent of patients had severe initial motor impairment and a majority still had residual force control impairments at 6 months. Force release at 3 weeks explained 11% additional variance of Box and Block Test outcome at 6 months, above that explained by initial scores (67%). Other kinetic measures did not explain additional variance of recovery. The predictive value of force release remained significant when controlling for corticospinal tract lesion load and clinical measures. Corticospinal tract lesion load correlated with recovery in grip force control measures. Lesions involving the parietal operculum, insular cortex, putamen and fronto-striatal tracts were also related to poorer force modulation and release. Lesions to fronto-striatal tracts explained an additional 5% of variance in force release beyond the 43% explained by corticospinal injury alone. Interhemispheric functional connectivity did not relate to force control recovery. We conclude that not only voluntary force generation but also force release (reflecting motor inhibition) are important for recovery of dexterous hand use after stroke. Although corticospinal injury is a main determinant of recovery, lesions to integrative somatosensory areas and fronto-parietal white matter (involved in motor inhibition) explain additional variance in post-stroke force release recovery. Our findings indicate that post-stroke upper limb motor impairment profiling, which is essential for targeted treatment, should consider both voluntary grasp generation and inhibition.

20.
J Neurosci ; 30(11): 4102-9, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20237280

RESUMO

Diffusion tensor imaging (DTI) can be used to elucidate relations between CNS structure and function. We hypothesized that the degree of spinal white matter organization relates to the accuracy of control of grip force. Healthy subjects of different age were studied using DTI and visuomotor tracking of precision grip force. The latter is a prime component of manual dexterity. A regional analysis of spinal white matter [fractional anisotropy (FA)] across multiple cervical levels (C2-C3, C4-C5, and C6-C7) and in different regions of interest (left and right lateral or medial spinal cord) was performed. FA was highest at the C2-C3 level, higher on the right than the left side, and higher in the lateral than in the medial spinal cord (p < 0.001). FA of whole cervical spinal cord (C2-C7) was lower in subjects with high tracking error (r = -0.56, p = 0.004) and decreased with age (r = -0.63, p = 0.001). A multiple regression analysis revealed an independent contribution of each predictor (semipartial correlations: age, r = -0.55, p < 0.001; tracking error, r = -0.49, p = 0.003). The closest relation between FA and tracking error was found at the C6-C7 level in the lateral spinal cord, in which the corticospinal tract innervates spinal circuitry controlling hand and digit muscles. FA of the medial spinal cord correlated consistently with age across all cervical levels, whereas FA of the lateral spinal cord did not. The results suggest (1) a functionally relevant specialization of lateral spinal cord white matter and (2) an increased sensitivity to age-related decline in medial spinal cord white matter in healthy subjects.


Assuntos
Envelhecimento/fisiologia , Vértebras Cervicais/fisiologia , Força da Mão/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Medula Espinal/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA