Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Acta Neurochir (Wien) ; 164(12): 3091-3100, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260235

RESUMO

INTRODUCTION: Multimodality monitoring of patients with severe traumatic brain injury (TBI) is primarily performed in neuro-critical care units to prevent secondary harmful brain insults and facilitate patient recovery. Several metrics are commonly monitored using both invasive and non-invasive techniques. The latest Brain Trauma Foundation guidelines from 2016 provide recommendations and thresholds for some of these. Still, high-level evidence for several metrics and thresholds is lacking. METHODS: Regarding invasive brain monitoring, intracranial pressure (ICP) forms the cornerstone, and pressures above 22 mmHg should be avoided. From ICP, cerebral perfusion pressure (CPP) (mean arterial pressure (MAP)-ICP) and pressure reactivity index (PRx) (a correlation between slow waves MAP and ICP as a surrogate for cerebrovascular reactivity) may be derived. In terms of regional monitoring, partial brain tissue oxygen pressure (PbtO2) is commonly used, and phase 3 studies are currently ongoing to determine its added effect to outcome together with ICP monitoring. Cerebral microdialysis (CMD) is another regional invasive modality to measure substances in the brain extracellular fluid. International consortiums have suggested thresholds and management strategies, in spite of lacking high-level evidence. Although invasive monitoring is generally safe, iatrogenic hemorrhages are reported in about 10% of cases, but these probably do not significantly affect long-term outcome. Non-invasive monitoring is relatively recent in the field of TBI care, and research is usually from single-center retrospective experiences. Near-infrared spectrometry (NIRS) measuring regional tissue saturation has been shown to be associated with outcome. Transcranial doppler (TCD) has several tentative utilities in TBI like measuring ICP and detecting vasospasm. Furthermore, serial sampling of biomarkers of brain injury in the blood can be used to detect secondary brain injury development. CONCLUSIONS: In multimodal monitoring, the most important aspect is data interpretation, which requires knowledge of each metric's strengths and limitations. Combinations of several modalities might make it possible to discern specific pathologic states suitable for treatment. However, the cost-benefit should be considered as the incremental benefit of adding several metrics has a low level of evidence, thus warranting additional research.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Estudos Retrospectivos , Pressão Intracraniana , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Circulação Cerebrovascular , Monitorização Fisiológica/métodos
2.
J Neuroinflammation ; 18(1): 221, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563211

RESUMO

BACKGROUND: Neuroinflammation following traumatic brain injury (TBI) has been shown to be associated with secondary injury development; however, how systemic inflammatory mediators affect this is not fully understood. The aim of this study was to see how systemic inflammation affects markers of neuroinflammation, if this inflammatory response had a temporal correlation between compartments and how different compartments differ in cytokine composition. METHODS: TBI patients recruited to a previous randomised controlled trial studying the effects of the drug anakinra (Kineret®), a human recombinant interleukin-1 receptor antagonist (rhIL1ra), were used (n = 10 treatment arm, n = 10 control arm). Cytokine concentrations were measured in arterial and jugular venous samples twice a day, as well as in microdialysis-extracted brain extracellular fluid (ECF) following pooling every 6 h. C-reactive protein level (CRP), white blood cell count (WBC), temperature and confirmed systemic clinical infection were used as systemic markers of inflammation. Principal component analyses, linear mixed-effect models, cross-correlations and multiple factor analyses were used. RESULTS: Jugular and arterial blood held similar cytokine information content, but brain-ECF was markedly different. No clear arterial to jugular gradient could be seen. No substantial delayed temporal associations between blood and brain compartments were detected. The development of a systemic clinical infection resulted in a significant decrease of IL1-ra, G-CSF, PDGF-ABBB, MIP-1b and RANTES (p < 0.05, respectively) in brain-ECF, even if adjusting for injury severity and demographic factors, while an increase in several cytokines could be seen in arterial blood. CONCLUSIONS: Systemic inflammation, and infection in particular, alters cytokine levels with different patterns seen in brain and in blood. Cerebral inflammatory monitoring provides independent information from arterial and jugular samples, which both demonstrate similar information content. These findings could present potential new treatment options in severe TBI patients, but novel prospective trials are warranted to confirm these associations.


Assuntos
Lesões Encefálicas Traumáticas , Citocinas/análise , Citocinas/metabolismo , Inflamação , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Líquido Extracelular/metabolismo , Feminino , Humanos , Agentes de Imunomodulação/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Masculino , Microdiálise/métodos , Doenças Neuroinflamatórias
3.
Crit Care ; 25(1): 103, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712077

RESUMO

BACKGROUND: Severe traumatic brain injury (TBI) is associated with blood-brain barrier (BBB) disruption and a subsequent neuroinflammatory process. We aimed to perform a multiplex screening of brain enriched and inflammatory proteins in blood and cerebrospinal fluid (CSF) in order to study their role in BBB disruption, neuroinflammation and long-term functional outcome in TBI patients and healthy controls. METHODS: We conducted a prospective, observational study on 90 severe TBI patients and 15 control subjects. Clinical outcome data, Glasgow Outcome Score, was collected after 6-12 months. We utilized a suspension bead antibody array analyzed on a FlexMap 3D Luminex platform to characterize 177 unique proteins in matched CSF and serum samples. In addition, we assessed BBB disruption using the CSF-serum albumin quotient (QA), and performed Apolipoprotein E-genotyping as the latter has been linked to BBB function in the absence of trauma. We employed pathway-, cluster-, and proportional odds regression analyses. Key findings were validated in blood samples from an independent TBI cohort. RESULTS: TBI patients had an upregulation of structural CNS and neuroinflammatory pathways in both CSF and serum. In total, 114 proteins correlated with QA, among which the top-correlated proteins were complement proteins. A cluster analysis revealed protein levels to be strongly associated with BBB integrity, but not carriage of the Apolipoprotein E4-variant. Among cluster-derived proteins, innate immune pathways were upregulated. Forty unique proteins emanated as novel independent predictors of clinical outcome, that individually explained ~ 10% additional model variance. Among proteins significantly different between TBI patients with intact or disrupted BBB, complement C9 in CSF (p = 0.014, ΔR2 = 7.4%) and complement factor B in serum (p = 0.003, ΔR2 = 9.2%) were independent outcome predictors also following step-down modelling. CONCLUSIONS: This represents the largest concomitant CSF and serum proteomic profiling study so far reported in TBI, providing substantial support to the notion that neuroinflammatory markers, including complement activation, predicts BBB disruption and long-term outcome. Individual proteins identified here could potentially serve to refine current biomarker modelling or represent novel treatment targets in severe TBI.


Assuntos
Barreira Hematoencefálica/anormalidades , Lesões Encefálicas Traumáticas/complicações , Líquido Cefalorraquidiano/metabolismo , Proteômica , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Suécia
4.
Acta Neurochir (Wien) ; 161(12): 2467-2478, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659439

RESUMO

BACKGROUND: The prognosis of penetrating traumatic brain injury (pTBI) is poor yet highly variable. Current computerized tomography (CT) severity scores are commonly not used for pTBI prognostication but may provide important clinical information in these cohorts. METHODS: All consecutive pTBI patients from two large neurotrauma databases (Helsinki 1999-2015, Stockholm 2005-2014) were included. Outcome measures were 6-month mortality and unfavorable outcome (Glasgow Outcome Scale 1-3). Admission head CT scans were assessed according to the following: Marshall CT classification, Rotterdam CT score, Stockholm CT score, and Helsinki CT score. The discrimination (area under the receiver operating curve, AUC) and explanatory variance (pseudo-R2) of the CT scores were assessed individually and in addition to a base model including age, motor response, and pupil responsiveness. RESULTS: Altogether, 75 patients were included. Overall 6-month mortality and unfavorable outcome were 45% and 61% for all patients, and 31% and 51% for actively treated patients. The CT scores' AUCs and pseudo-R2s varied between 0.77-0.90 and 0.35-0.60 for mortality prediction and between 0.85-0.89 and 0.50-0.57 for unfavorable outcome prediction. The base model showed excellent performance for mortality (AUC 0.94, pseudo-R2 0.71) and unfavorable outcome (AUC 0.89, pseudo-R2 0.53) prediction. None of the CT scores increased the base model's AUC (p > 0.05) yet increased its pseudo-R2 (0.09-0.15) for unfavorable outcome prediction. CONCLUSION: Existing head CT scores demonstrate good-to-excellent performance in 6-month outcome prediction in pTBI patients. However, they do not add independent information to known outcome predictors, indicating that a unique score capturing the intracranial severity in pTBI may be warranted.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Traumatismos Cranianos Penetrantes/diagnóstico por imagem , Tomografia Computadorizada por Raios X/normas , Adulto , Lesões Encefálicas Traumáticas/mortalidade , Lesões Encefálicas Traumáticas/patologia , Feminino , Escala de Resultado de Glasgow , Traumatismos Cranianos Penetrantes/mortalidade , Traumatismos Cranianos Penetrantes/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico
5.
Neurotherapeutics ; 20(6): 1508-1528, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610701

RESUMO

Traumatic brain injury is a common type of acquired brain injury of varying severity carrying potentially deleterious consequences for the afflicted individuals, families, and society. Following the initial, traumatically induced insult, cellular injury processes ensue. These are believed to be amenable to treatment. Among such injuries, neuroinflammation has gained interest and has become a specific focus for both experimental and clinical researchers. Neuroinflammation is elicited almost immediately following trauma, and extend for a long time, possibly for years, after the primary injury. In the acute phase, the inflammatory response is characterized by innate mechanisms such as the activation of microglia which among else mediates cytokine production. Among the earliest cytokines to emerge are the interleukin- (IL-) 1 family members, comprising, for example, the agonist IL-1ß and its competitive antagonist, IL-1 receptor antagonist (IL-1ra). Because of its early emergence following trauma and its increased concentrations also after human TBI, IL-1 has been hypothesized to be a tractable treatment target following TBI. Ample experimental data supports this, and demonstrates restored neurological behavior, diminished lesion zones, and an attenuated inflammatory response following IL-1 modulation either through IL-1 knock-out experiments, IL-1ß inhibition, or IL-1ra treatment. Of these, IL-1ra treatment is likely the most physiological. In addition, recombinant human IL-1ra (anakinra) is already approved for utilization across a few rheumatologic disorders. As of today, one randomized clinical controlled trial has utilized IL-1ra inhibition as an intervention and demonstrated its safety. Further clinical trials powered for patient outcome are needed in order to demonstrate efficacy. In this review, we summarize IL-1 biology in relation to acute neuroinflammatory processes following TBI with a particular focus on current evidence for IL-1ra treatment both in the experimental and clinical context.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Doenças Neuroinflamatórias , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/tratamento farmacológico , Receptores de Interleucina-1
6.
J Inflamm (Lond) ; 20(1): 22, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370141

RESUMO

BACKGROUND: Astrocytes respond to injury and disease through a process known as reactive astrogliosis, of which inflammatory signaling is one subset. This inflammatory response is heterogeneous with respect to the inductive stimuli and the afflicted central nervous system region. This is of plausible importance in e.g. traumatic axonal injury (TAI), where lesions in the brainstem carries a particularly poor prognosis. In fact, astrogliotic forebrain astrocytes were recently suggested to cause neuronal death following axotomy. We therefore sought to assess if ventral brainstem- or rostroventral spinal astrocytes exert similar effects on motor neurons in vitro. METHODS: We derived brainstem/rostroventral spinal astrocyte-like cells (ES-astrocytes) and motor neurons using directed differentiation of mouse embryonic stem cells (ES). We activated the ES-astrocytes using the neurotoxicity-eliciting cytokines interleukin- (IL-) 1α and tumor necrosis factor-(TNF-)α and clinically relevant inflammatory mediators. In co-cultures with reactive ES-astrocytes and motor neurons, we assessed neurotoxic ES-astrocyte activity, similarly to what has previously been shown for other central nervous system (CNS) regions. RESULTS: We confirmed the brainstem/rostroventral ES-astrocyte identity using RNA-sequencing, immunocytochemistry, and by comparison with primary subventricular zone-astrocytes. Following cytokine stimulation, the c-Jun N-terminal kinase pathway down-stream product phosphorylated c-Jun was increased, thus demonstrating ES-astrocyte reactivity. These reactive ES-astrocytes conferred a contact-dependent neurotoxic effect upon co-culture with motor neurons. When exposed to IL-1ß and IL-6, two neuroinflammatory cytokines found in the cerebrospinal fluid and serum proteome following human severe traumatic brain injury (TBI), ES-astrocytes exerted similar effects on motor neurons. Activation of ES-astrocytes by these cytokines was associated with pathways relating to endoplasmic reticulum stress and altered regulation of MYC. CONCLUSIONS: Ventral brainstem and rostroventral spinal cord astrocytes differentiated from mouse ES can exert neurotoxic effects in vitro. This highlights how neuroinflammation following CNS lesions can exert region- and cell-specific effects. Our in vitro model system, which uniquely portrays astrocytes and neurons from one niche, allows for a detailed and translationally relevant model system for future studies on how to improve neuronal survival in particularly vulnerable CNS regions following e.g. TAI.

7.
Sci Rep ; 13(1): 19249, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935800

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a life-supportive treatment in neonatal patients with refractory lung and/or heart failure. Intracranial hemorrhage (ICH) is a severe complication and reliable predictors are warranted. The aims of this study were to explore the incidence and possible predictors of ICH in ECMO-treated neonatal patients. We performed a single-center retrospective observational cohort study. Patients aged ≤ 28 days treated with ECMO between 2010 and 2018 were included. Exclusion criteria were ICH, ischemic stroke, cerebrovascular malformation before ECMO initiation or detected within 12 h of admission, ECMO treatment < 12 h, or prior treatment with ECMO at another facility > 12 h. The primary outcome was a CT-verified ICH. Logistic regression models were employed to identify possible predictors of the primary outcome. Of the 223 patients included, 29 (13%) developed an ICH during ECMO treatment. Thirty-day mortality was 59% in the ICH group and 16% in the non-ICH group (p < 0.0001). Lower gestational age (p < 0.01, odds ratio (OR) 0.96; 95%CI 0.94-0.98), and higher pre-ECMO lactate levels (p = 0.017, OR 1.1; 95%CI 1.01-1.18) were independently associated with increased risk of ICH-development. In the clinical setting, identification of risk factors and multimodal neuromonitoring could help initiate steps that lower the risk of ICH in these patients.


Assuntos
Oxigenação por Membrana Extracorpórea , AVC Isquêmico , Recém-Nascido , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Estudos Retrospectivos , Hemorragias Intracranianas/epidemiologia , Hemorragias Intracranianas/etiologia , Fatores de Risco , AVC Isquêmico/etiologia
8.
Intensive Care Med Exp ; 11(1): 54, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541993

RESUMO

BACKGROUND: The aim of this study is to evaluate the impact of commonly administered sedatives (Propofol, Alfentanil, Fentanyl, and Midazolam) and vasopressor (Dobutamine, Ephedrine, Noradrenaline and Vasopressin) agents on cerebrovascular reactivity in moderate/severe TBI patients. Cerebrovascular reactivity, as a surrogate for cerebral autoregulation was assessed using the long pressure reactivity index (LPRx). We evaluated the data in two phases, first we assessed the minute-by-minute data relationships between different dosing amounts of continuous infusion agents and physiological variables using boxplots, multiple linear regression and ANOVA. Next, we assessed the relationship between continuous/bolus infusion agents and physiological variables, assessing pre-/post- dose of medication change in physiology using a Wilcoxon signed-ranked test. Finally, we evaluated sub-groups of data for each individual dose change per medication, focusing on key physiological thresholds and demographics. RESULTS: Of the 475 patients with an average stay of 10 days resulting in over 3000 days of recorded information 367 (77.3%) were male with a median Glasgow coma score of 7 (4-9). The results of this retrospective observational study confirmed that the infusion of most administered agents do not impact cerebrovascular reactivity, which is confirmed by the multiple linear regression components having p value > 0.05. Incremental dose changes or bolus doses in these medications in general do not lead to significant changes in cerebrovascular reactivity (confirm by Wilcoxon signed-ranked p value > 0.05 for nearly all assessed relationships). Within the sub-group analysis that separated the data based on LPRx pre-dose, a significance between pre-/post-drug change in LPRx was seen, however this may be more of a result from patient state than drug impact. CONCLUSIONS: Overall, this study indicates that commonly administered agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity in TBI (nor do they impair cerebrovascular reactivity). Though further investigation in a larger and more diverse TBI patient population is required.

9.
J Neurotrauma ; 40(19-20): 2164-2173, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37261979

RESUMO

The neuroinflammatory response after traumatic brain injury (TBI) is implicated as a key mediator of secondary injury in both the acute and chronic periods after primary injury. Microglia are the key innate immune cell in the central nervous system, responding to injury with the release of cytokines and chemokines. In this context, we aimed to characterize the downstream cytokine response of human induced pluripotent stem cell (iPSC)-derived microglia when stimulated with five separate cytokines identified after human TBI. The iPSC-derived microglia were exposed to interleukin (IL)-1ß, IL-4, IL-6, IL-10, and tumor necrosis factor (TNF) in the concentration ranges identified in clinical TBI studies. The downstream cytokine response was measured against a panel of 37 separate cytokines over a 72h time-course. The secretome revealed concentration-, time- and combined concentration and time-dependent downstream responses. TNF appeared to be the strongest inducer of downstream cytokine changes (51), followed by IL-1ß (26) and IL-4 (19). IL-10 (11) and IL-6 (10) produced fewer responses. We also compare these responses with our previous studies of iPSC-derived neuronal and astrocyte cultures and the in vivo human TBI cytokine response. Notably, we found microglial culture to induce both a wider range of downstream cytokine responses and a greater fold change in concentration for those downstream responses, compared with astrocyte and neuronal cultures. In summary, we present a dataset for human microglial cytokine responses specific to the secretome found in the clinical context of TBI. This reductionist approach complements our previous datasets for astrocyte and neuronal responses and will provide a platform to enable future studies to unravel the complex neuroinflammatory network activated after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Microglia/patologia , Interleucina-10 , Interleucina-6 , Interleucina-4 , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/complicações , Citocinas , Lesões Encefálicas/complicações , Fator de Necrose Tumoral alfa
10.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37776854

RESUMO

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Assuntos
Aracnoide-Máter , Meninges , Camundongos , Animais , Aracnoide-Máter/anatomia & histologia , Pia-Máter , Plexo Corióideo , Encéfalo
11.
J Neurotrauma ; 39(1-2): 58-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806407

RESUMO

Studies show conflicting results regarding the prognostic significance of traumatic axonal injuries (TAI) in patients with traumatic brain injury (TBI). Therefore, we documented the presence of TAI in several brain regions, using different magnetic resonance imaging (MRI) sequences, and assessed their association to patient outcomes using machine learning. Further, we created a novel MRI-based TAI grading system with the goal of improving outcome prediction in TBI. We subsequently evaluated the performance of several TAI grading systems. We used a genetic algorithm to identify TAI that distinguish favorable from unfavorable outcomes. We assessed the discriminatory performance (area under the curve [AUC]) and goodness-of-fit (Nagelkerke pseudo-R2) of the novel Stockholm MRI grading system and the TAI grading systems of Adams and associates, Firsching and coworkers. and Abu Hamdeh and colleagues, using both univariate and multi-variate logistic regression. The dichotomized Glasgow Outcome Scale was considered the primary outcome. We examined the MRI scans of 351 critically ill patients with TBI. The TAI in several brain regions, such as the midbrain tegmentum, were strongly associated with unfavorable outcomes. The Stockholm MRI grading system exhibited the highest AUC (0.72 vs. 0.68-0.69) and Nagelkerke pseudo-R2 (0.21 vs. 0.14-0.15) values of all TAI grading systems. These differences in model performance, however, were not statistically significant (DeLong test, p > 0.05). Further, all included TAI grading systems improved outcome prediction relative to established outcome predictors of TBI, such as the Glasgow Coma Scale (likelihood-ratio test, p < 0.001). Our findings suggest that the detection of TAI using MRI is a valuable addition to prognostication in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Axonal Difusa , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Estado Terminal , Lesão Axonal Difusa/diagnóstico por imagem , Lesão Axonal Difusa/patologia , Escala de Resultado de Glasgow , Humanos , Imageamento por Ressonância Magnética , Prognóstico
12.
Sci Rep ; 12(1): 17932, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289242

RESUMO

To determine the incidence and identify predictors of brain infarctions (BI) in neonatal patients treated with extracorporeal membrane oxygenation (ECMO). We performed a retrospective cohort study at ECMO Centre Karolinska, Stockholm, Sweden. Logistic regression models were used to identify BI predictors. Neonates (age 0-28 days) treated with veno-arterial (VA) or veno-venous (VV) ECMO between 2010 and 2018. The primary outcome was a computed tomography (CT) verified BI diagnosed during ECMO treatment. In total, 223 patients were included, 102 patients (46%) underwent at least one brain CT and 27 patients (12%) were diagnosed with a BI. BI diagnosis was associated with increased 30-day mortality (48% vs. 18%). High pre-ECMO Pediatric Index of Mortality score, sepsis as the indication for ECMO treatment, VA ECMO, conversion between ECMO modes, use of continuous renal replacement therapy, and extracranial thrombosis were identified as independent predictors of BI development. The incidence of BI in neonatal ECMO patients may be higher than previously understood. Risk factor identification may help initiate steps to lower the risk or facilitate earlier diagnosis of BI in neonates undergoing ECMO treatment.


Assuntos
Oxigenação por Membrana Extracorpórea , Recém-Nascido , Humanos , Criança , Oxigenação por Membrana Extracorpórea/métodos , Incidência , Estudos Retrospectivos , Resultado do Tratamento , Estudos de Coortes , Infarto Encefálico/diagnóstico por imagem , Infarto Encefálico/epidemiologia , Infarto Encefálico/etiologia
13.
Sci Rep ; 11(1): 3809, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589664

RESUMO

Non-hemorrhagic brain infarction (BI) is a recognized complication in adults treated with extracorporeal membrane oxygenation (ECMO) and associated with increased mortality. However, predictors of BI in these patients are poorly understood. The aim of this study was to identify predictors of BI in ECMO-treated adult patients. We conducted an observational cohort study of all adult patients treated with venovenous or venoarterial (VA) ECMO at our center between 2010 and 2018. The primary endpoint was a computed tomography (CT) verified BI. Logistic regression models were employed to identify BI predictors. In total, 275 patients were included, of whom 41 (15%) developed a BI. Pre-ECMO Simplified Acute Physiology Score III, pre-ECMO cardiac arrest, VA ECMO and conversion between ECMO modes were identified as predictors of BI. In the multivariable analysis, VA ECMO demonstrated independent risk association. VA ECMO also remained the independent BI predictor in a sub-group analysis excluding patients who did not undergo a head CT scan during ECMO treatment. The incidence of BI in adult ECMO patients may be higher than previously believed and is independently associated with VA ECMO mode. Larger prospective trials are warranted to validate these findings and ascertain their clinical significance.


Assuntos
Infarto Encefálico/mortalidade , Infarto Encefálico/terapia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Parada Cardíaca/mortalidade , Adulto , Infarto Encefálico/complicações , Infarto Encefálico/diagnóstico por imagem , Estudos de Coortes , Feminino , Parada Cardíaca/diagnóstico por imagem , Parada Cardíaca/etiologia , Parada Cardíaca/patologia , Mortalidade Hospitalar , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Tomografia Computadorizada de Emissão
14.
Front Neurol ; 11: 610192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519689

RESUMO

Background: Secondary transports of patients suffering from traumatic brain injury (TBI) may result in a delayed management and neurosurgical intervention, which is potentially detrimental. The aim of this study was to study the effect of triaging and delayed transfers on outcome, specifically studying time to diagnostics and neurosurgical management. Methods: This was a retrospective observational cohort study of TBI patients in need of neurosurgical care, 15 years and older, in the Stockholm Region, Sweden, from 2008 throughout 2014. Data were collected from pre-hospital and in-hospital charts. Known TBI outcome predictors, including the protein biomarker of brain injury S100B, were used to assess injury severity. Characteristics and outcomes of direct trauma center (TC) and those of secondary transfers were evaluated and compared. Functional outcome, using the Glasgow Outcome Scale, was assessed in survivors at 6-12 months after trauma. Regression models, including propensity score balanced models, were used for endpoint assessment. Results: A total of n = 457 TBI patients were included; n = 320 (70%) patients were direct TC transfers, whereas n = 137 (30%) were secondary referrals. In all, n = 295 required neurosurgery for the first 24 h after trauma (about 75% of each subgroup). Direct TC transfers were more severely injured (median Glasgow Coma Scale 8 vs. 13) and more often suffered a high energy trauma (31 vs. 2.9%) than secondary referrals. Admission S100B was higher in the TC transfer group, though S100B levels 12-36 h after trauma were similar between cohorts. Direct or indirect TC transfer could be predicted using propensity scoring. The secondary referrals had a shorter distance to the primary hospital, but had later radiology and surgery than the TC group (all p < 0.001). In adjusted multivariable analyses with and without propensity matching, direct or secondary transfers were not found to be significantly related to outcome. Time from trauma to surgery did not affect outcome. Conclusions: TBI patients secondary transported to a TC had surgical intervention performed hours later, though this did not affect outcome, presumably demonstrating that accurate pre-hospital triaging was performed. This indicates that for selected patients, a wait-and-see approach with delayed neurosurgical intervention is not necessarily detrimental, but warrants further research.

15.
J Neurotrauma ; 37(1): 106-114, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31298609

RESUMO

Cerebral microdialysis (CMD) is used in severe traumatic brain injury (TBI) in order to recover metabolites in brain extracellular fluid (ECF). To recover larger proteins and avoid fluid loss, albumin supplemented perfusion fluid (PF) has been utilized, but because of regulatory changes in the European Union, this is no longer practicable. The aim with this study was to see whether fluid, absolute (AR), and relative (RR) recovery for the novel carrier, Dextran 500, was better than conventional PF for a range of cytokines and chemokines. An in vitro setup mimicking conditions observed in the neurocritical care of TBI patients was used, utilizing 100-kDa molecular-weight cut-off CMD catheters inserted through a triple-lumen bolt cranial access device into an external solution with diluted cytokine standards in known concentrations for 48 h (divided into 6-h epochs). Samples were run on a 39-plex Luminex (Luminex Corporation, Austin, TX) assay to assess cytokine concentrations. We found that fluid recovery was inadequate in 50% of epochs with conventional PF, whereas Dextran PF overcame this limitation. The AR was higher in the Dextran PF samples for a majority of cytokines, and RR was significantly increased for macrophage colony-stimulating factor and transforming growth factor-alpha. In summary, Dextran PF improved fluid and cytokine recovery as compared to conventional PF and is a suitable alternative to albumin supplemented PF for protein microdialysis.


Assuntos
Biomarcadores/análise , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/análise , Dextranos , Microdiálise/métodos , Líquido Extracelular/metabolismo , Humanos , Técnicas In Vitro , Inflamação/etiologia
16.
J Neurotrauma ; 37(12): 1381-1391, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32013731

RESUMO

Brain protein biomarker clearance to blood in traumatic brain injury (TBI) is not fully understood. The aim of this study was to analyze the effect that a disrupted blood-brain barrier (BBB) had on biomarker clearance. Seventeen severe TBI patients admitted to Karolinska University Hospital were prospectively included. Cerebrospinal fluid (CSF) and blood concentrations of S100 calcium binding protein B (S100B) and neuron-specific enolase (NSE) were analyzed every 6-12 h for ∼1 week. Blood and CSF albumin were analyzed every 12-24 h, and BBB integrity was assessed using the CSF:blood albumin quotient (QA). We found that time-dependent changes in the CSF and blood levels of the two biomarkers were similar, but that the correlation between the biomarkers and QA was lower for NSE (ρ = 0.444) than for S100B (ρ = 0.668). Because data were longitudinal, we also conducted cross correlation analyses, which indicated a directional flow and lag-time of biomarkers from CSF to blood. For S100B, this lag-time could be ascribed to BBB integrity, whereas for NSE it could not. Upon inferential modelling, using generalized least square estimation (S100B) or linear mixed models (NSE), QA (p = 0.045), time from trauma (p < 0.001), time from trauma2 (p = 0.023), and CSF biomarker levels (p = 0.008) were independent predictors of S100B in blood. In contrast, for NSE, only time from trauma was significant (p < 0.001). These findings are novel and important, but must be carefully interpreted because of different characteristics between the two proteins. Nonetheless, we present the first data that indicate that S100B and NSE are cleared differently from the central nervous system, and that both the disrupted BBB and additional alternative pathways, such as the recently described glymphatic system, may play a role. This is of importance both for clinicians aiming to utilize these biomarkers and for the pathophysiological understanding of brain protein clearance, but warrants further examination.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Sistema Glinfático/metabolismo , Fosfopiruvato Hidratase/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Índice de Gravidade de Doença , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/diagnóstico , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
17.
Front Neurol ; 10: 512, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156541

RESUMO

Introduction: Intracranial lesion development is a recognized complication in adults treated with extracorporeal membrane oxygenation (ECMO) and is associated with increased mortality. As neurological assessment during ECMO treatment remains challenging, protein biomarkers of cerebral injury could provide an opportunity to detect intracranial lesion development at an early stage. The aim of this study was to determine if serially sampled S100B could be used to detect intracranial lesion development during ECMO treatment. Methods: We conducted an observational cohort study of all patients treated with ECMO at ECMO Center Karolinska (Karolinska University Hospital, Stockholm, Sweden) between January and August 2018, excluding patients who did not undergo a computerized tomography scan (CT) during treatment. S100B was prospectively collected at hospital admission and then once daily. The primary end-point was any type of CT verified intracranial lesion. Receiver operating characteristics (ROC) curves and Cox proportional hazards models were employed. Results: Twenty-nine patients were included, of which 15 (52%) developed an intracranial lesion and exhibited higher levels of S100B overall. S100B had a robust association with intracranial lesion development, especially during the first 200 hours following admission. The best area-under-curve (AUC) to predict intracranial lesion development was 40 and 140 hours following ECMO initiation, were a S100B level of 0.69µg/L had an AUC of 0.81 (0.628-0.997). S100B levels were markedly increased following the development of intracranial hemorrhage. Conclusions: Serial serum S100B samples in ECMO patients were both significantly elevated and had an increasing trajectory in patients developing intracranial lesions. Larger prospective trials are warranted to validate these findings and to ascertain their clinical utility.

18.
Front Neurol ; 9: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434566

RESUMO

BACKGROUND: Despite seemingly functional coagulation, hemorrhagic lesion progression is a common and devastating condition following traumatic brain injury (TBI), stressing the need for new diagnostic techniques. Multiple electrode aggregometry (MEA) measures platelet function and could aid in coagulopathy assessment following TBI. The aims of this study were to evaluate MEA temporal dynamics, influence of concomitant therapy, and its capabilities to predict lesion progression and clinical outcome in a TBI cohort. MATERIAL AND METHODS: Adult TBI patients in a neurointensive care unit that underwent MEA sampling were retrospectively included. MEA was sampled if the patient was treated with antiplatelet therapy, bled heavily during surgery, or had abnormal baseline coagulation values. We assessed platelet activation pathways involving the arachidonic acid receptor (ASPI), P2Y12 receptor, and thrombin receptor (TRAP). ASPI was the primary focus of analysis. If several samples were obtained, they were included. Retrospective data were extracted from hospital charts. Outcome variables were radiologic hemorrhagic progression and Glasgow Outcome Scale assessed prospectively at 12 months posttrauma. MEA levels were compared between patients on antiplatelet therapy. Linear mixed effect models and uni-/multivariable regression models were used to study longitudinal dynamics, hemorrhagic progression and outcome, respectively. RESULTS: In total, 178 patients were included (48% unfavorable outcome). ASPI levels increased from initially low values in a time-dependent fashion (p < 0.001). Patients on cyclooxygenase inhibitors demonstrated low ASPI levels (p < 0.001), while platelet transfusion increased them (p < 0.001). The first ASPI (p = 0.039) and TRAP (p = 0.009) were significant predictors of outcome, but not lesion progression, in univariate analyses. In multivariable analysis, MEA values were not independently correlated with outcome. CONCLUSION: A general longitudinal trend of MEA is identified in this TBI cohort, even in patients without known antiplatelet therapies. Values appear also affected by platelet inhibitory treatment and by platelet transfusions. While significant in univariate models to predict outcome, MEA values did not independently correlate to outcome or lesion progression in multivariable analyses. Further prospective studies to monitor coagulation in TBI patients are warranted, in particular the interpretation of pathological MEA values in patients without antiplatelet therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA