Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 52(4): 566-73, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267451

RESUMO

DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.


Assuntos
Cromossomos Humanos/genética , Adutos de DNA/genética , DNA Primase/fisiologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/fisiologia , Enzimas Multifuncionais/fisiologia , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular , Galinhas , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , DNA Primase/química , DNA de Cadeia Simples/química , DNA Polimerase Dirigida por DNA/química , Pontos de Checagem da Fase G2 do Ciclo Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Enzimas Multifuncionais/química , Raios Ultravioleta , Xenopus
2.
Future Oncol ; 12(2): 221-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26616915

RESUMO

There is an extensive and growing body of evidence that DNA replication stress is a major driver in the development and progression of many cancers, and that these cancers rely heavily on replication stress response pathways for their continued proliferation. This raises the possibility that the pathways that ordinarily protect cells from the accumulation of cancer-causing mutations may actually prove to be effective therapeutic targets for a wide range of malignancies. In this review, we explore the mechanisms by which sustained proliferation can lead to replication stress and genome instability, and discuss how the pattern of mutations observed in human cancers is supportive of this oncogene-induced replication stress model. Finally, we go on to consider the implications of replication stress both as a prognostic indicator and, more encouragingly, as a potential target in cancer treatment.


Assuntos
Dano ao DNA , Replicação do DNA , Neoplasias/etiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Progressão da Doença , Instabilidade Genômica , Humanos , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Oncogenes , Transdução de Sinais
3.
Nucleic Acids Res ; 41(16): 7725-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23788677

RESUMO

UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) has a well-established role in epigenetic regulation through the recognition of various histone marks and interaction with chromatin-modifying proteins. However, its function in regulating cell cycle progression remains poorly understood and has been largely attributed to a role in transcriptional regulation. In this study we have used Xenopus laevis egg extracts to analyse Uhrf1 function in DNA replication in the absence of transcriptional influences. We demonstrate that removal of Uhrf1 inhibits chromosomal replication in this system. We further show that this requirement for Uhrf1, or an associated factor, occurs at an early stage of DNA replication and that the consequences of Uhrf1 depletion are not solely due to its role in loading Dnmt1 onto newly replicated DNA. We describe the pattern of Uhrf1 chromatin association before the initiation of DNA replication and show that this reflects functional requirements both before and after origin licensing. Our data demonstrate that the removal of Xenopus Uhrf1 influences the chromatin association of key replication proteins and reveal Uhrf1 as an important new factor required for metazoan DNA replication.


Assuntos
Replicação do DNA , Ubiquitina-Proteína Ligases/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Ciclo Celular , Extratos Celulares , Cromatina/metabolismo , Cromossomos/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Óvulo/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis
4.
Nucleic Acids Res ; 38(2): 441-54, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892829

RESUMO

The repair of DNA double-strand breaks (DSBs) is essential to maintain genomic integrity. In higher eukaryotes, DNA DSBs are predominantly repaired by non-homologous end joining (NHEJ), but DNA ends can also be joined by an alternative error-prone mechanism termed microhomology-mediated end joining (MMEJ). In MMEJ, the repair of DNA breaks is mediated by annealing at regions of microhomology and is always associated with deletions at the break site. In budding yeast, the Mre11/Rad5/Xrs2 complex has been demonstrated to play a role in both classical NHEJ and MMEJ, but the involvement of the analogous MRE11/RAD50/NBS1 (MRN) complex in end joining in higher eukaryotes is less certain. Here we demonstrate that in Xenopus laevis egg extracts, the MRN complex is not required for classical DNA-PK-dependent NHEJ. However, the XMRN complex is necessary for resection-based end joining of mismatched DNA ends. This XMRN-dependent end joining process is independent of the core NHEJ components Ku70 and DNA-PK, occurs with delayed kinetics relative to classical NHEJ and brings about repair at sites of microhomology. These data indicate a role for the X. laevis MRN complex in MMEJ.


Assuntos
Proteínas de Transporte/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Antígenos Nucleares/metabolismo , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Enzimas Reparadoras do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku , Proteína Homóloga a MRE11 , Óvulo/metabolismo , Recombinação Genética , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/genética , Proteínas de Xenopus/análise , Proteínas de Xenopus/genética , Xenopus laevis
5.
J Cell Biol ; 173(2): 181-6, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16618813

RESUMO

TopBP1-like proteins, which include Xenopus laevis Xmus101, are required for DNA replication and have been linked to replication checkpoint control. A direct role for TopBP1/Mus101 in checkpoint control has been difficult to prove, however, because of the requirement for replication in generating the DNA structures that activate the checkpoint. Checkpoint activation occurs in X. laevis egg extracts upon addition of an oligonucleotide duplex (AT70). We show that AT70 bypasses the requirement for replication in checkpoint activation. We take advantage of this replication-independent checkpoint system to determine the role of Xmus101 in the checkpoint. We find that Xmus101 is essential for AT70-mediated checkpoint signaling and that it functions to promote phosphorylation of Claspin bound Chk1 by the ataxia-telangiectasia and Rad-3-related (ATR) protein kinase. We also identify a separation-of-function mutant of Xmus101. In extracts expressing this mutant, replication of sperm chromatin occurs normally; however, the checkpoint response to stalled replication forks fails. These data demonstrate that Xmus101 functions directly during signal relay from ATR to Chk1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Células Cultivadas , Quinase 1 do Ponto de Checagem , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus/genética
6.
Sci Adv ; 7(49): eabh1004, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860556

RESUMO

Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol's RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.

7.
J Cell Biol ; 158(5): 863-72, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12213834

RESUMO

Alkylating agents, such as methyl methanesulfonate (MMS), damage DNA and activate the DNA damage checkpoint. Although many of the checkpoint proteins that transduce damage signals have been identified and characterized, the mechanism that senses the damage and activates the checkpoint is not yet understood. To address this issue for alkylation damage, we have reconstituted the checkpoint response to MMS in Xenopus egg extracts. Using four different indicators for checkpoint activation (delay on entrance into mitosis, slowing of DNA replication, phosphorylation of the Chk1 protein, and physical association of the Rad17 checkpoint protein with damaged DNA), we report that MMS-induced checkpoint activation is dependent upon entrance into S phase. Additionally, we show that the replication of damaged double-stranded DNA, and not replication of damaged single-stranded DNA, is the molecular event that activates the checkpoint. Therefore, these data provide direct evidence that replication forks are an obligate intermediate in the activation of the DNA damage checkpoint.


Assuntos
Ciclo Celular , Dano ao DNA , Replicação do DNA , Oócitos/citologia , Oócitos/metabolismo , Alquilação , Animais , Proteínas de Ciclo Celular/metabolismo , Extratos Celulares , Quinase 1 do Ponto de Checagem , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Proteínas Quinases/metabolismo , Fase S , Xenopus , Proteínas de Xenopus/metabolismo
8.
Mol Cell Biol ; 23(18): 6553-63, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12944481

RESUMO

The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1(+) homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS) sensitivity and were synthetically lethal with the rad2Delta mutation. Nbs1 physically interacts with the C-terminal half of Rad32, the Schizosaccharomyces pombe Mre11 homologue, in a yeast two-hybrid assay. nbs1 mutants showed sensitivities to gamma-rays, UV, MMS, and hydroxyurea and displayed telomere shortening similar to the characteristics of rad32 and rad50 mutants. nbs1, rad32, and rad50 mutant cells were elongated and exhibited abnormal nuclear morphology. These findings indicate that S. pombe Nbs1 forms a complex with Rad32-Rad50 and is required for homologous recombination repair, telomere length regulation, and the maintenance of chromatin structure. Amino acid sequence features and some characteristics of the DNA repair function suggest that the S. pombe Rad32-Rad50-Nbs1 complex has functional similarity to the corresponding MRN complexes of higher eukaryotes. Therefore, S. pombe Nbs1 will provide an additional model system for studying the molecular function of the MRN complex associated with genetic diseases.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Telômero/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Núcleo Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/efeitos da radiação , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Raios Ultravioleta
9.
Mol Biol Cell ; 14(9): 3898-910, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12972573

RESUMO

The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Cromatina/metabolismo , Sequência de Aminoácidos , Animais , Afidicolina/farmacologia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Clonagem Molecular , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA , Feminino , Masculino , Dados de Sequência Molecular , Oócitos , Fosforilação , Antígeno Nuclear de Célula em Proliferação/genética , Homologia de Sequência , Espermatozoides , Proteínas de Xenopus/metabolismo , Xenopus laevis
10.
PLoS One ; 12(7): e0181131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715428

RESUMO

Acting through a complex signalling network, DNA lesions trigger a range of cellular responses including DNA repair, cell cycle arrest, altered gene expression and cell death, which help to limit the mutagenic effects of such DNA damage. RNA processing factors are increasingly being recognised as important targets of DNA damage signalling, with roles in the regulation of gene expression and also more directly in the promotion of DNA repair. In this study, we have used a Xenopus laevis egg extract system to analyse the DNA damage-dependent phosphorylation of a putative RNA export factor, Cip29. We have found that Cip29 is rapidly phosphorylated in response to DNA double-strand breaks in this experimental system. We show that the DNA damage-inducible modification of Cip29 is dependent on the activity of the key double-strand break response kinase, ATM, and we have identified a conserved serine residue as a damage-dependent phosphorylation site. Finally, we have determined that Cip29 is not required for efficient DNA end-joining in egg extracts. Taken together, these data identify Cip29 as a novel target of the DNA damage response and suggest that the damage-dependent modification of Cip29 may relate to a role in the regulation of gene expression after DNA damage.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Mutagênese Sítio-Dirigida , Óvulo/metabolismo , Fosforilação , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Xenopus/crescimento & desenvolvimento , Proteínas de Xenopus/genética
11.
Nat Commun ; 8: 15222, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534480

RESUMO

DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.


Assuntos
DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína de Replicação A/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Galinhas , Cromatina/metabolismo , Cristalografia por Raios X , DNA Primase/química , DNA Polimerase Dirigida por DNA/química , Células HEK293 , Humanos , Modelos Biológicos , Enzimas Multifuncionais/química , Ligação Proteica , Domínios Proteicos , Proteína de Replicação A/química , Xenopus
12.
J Cell Sci ; 116(Pt 17): 3519-29, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12865439

RESUMO

The fission yeast BRCT domain protein Rad4/Cut5 is required for genome integrity checkpoint responses and DNA replication. Here we address the position at which Rad4/Cut5 acts within the checkpoint response pathways. Rad4 is shown to act upstream of the effector kinases Chk1 and Cds1, as both Chk1 phosphorylation and Cds1 kinase activity require functional Rad4. Phosphorylation of Rad9, Rad26 and Hus1 in response to either DNA damage or inhibition of DNA replication are independent of Rad4/Cut5 checkpoint function. Further we show that a novel, epitope-tagged allele of rad4+/cut5+ acts as a dominant suppressor of the checkpoint deficiencies of rad3-, rad26- and rad17- mutants. Suppression results in the restoration of mitotic arrest and is dependent upon the remaining checkpoint Rad proteins and the two effector kinases. High-level expression of the rad4+/cut5+ allele in rad17 mutant cells restores the nuclear localization of Rad9, but this does not fully account for the observed suppression. We conclude from these data that Rad4/Cut5 acts with Rad3, Rad26 and Rad17 to effect the checkpoint response, and a model for its function is discussed.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transglutaminases/metabolismo , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Mutação , Fosforilação , Plasmídeos/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transglutaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA