RESUMO
PURPOSE: DOTATATE PET/CT (DOTATATE) is superior to conventional imaging in detecting metastasis for gastroenteropancreatic neuroendocrine tumors (GEP-NETs). However, limited availability, high-cost, and additive radiation exposure necessitate guidelines for its use. This study seeks to investigate the relationship between clinical characteristics and metastasis on DOTATATE. METHODS: This was a retrospective analysis of 815 patients who underwent DOTATATE at UCLA from 2014 to 2022. After applying inclusion and exclusion criteria, the study cohort consisted of 163 patients with pathologically diagnosed GEP-NETs, who either underwent primary tumor resection within 1-year prior, or had not undergone resection at the time of DOTATATE imaging. The presence of metastasis was determined using DOTATATE. Fisher's exact test, chi-squared test, and Mann-Whitney test were conducted to compare intergroup difference. Multivariate analysis was performed to identify clinical characteristics associated with metastasis on DOTATATE. RESULTS: Of patients with GEP-NETs, 40.5% (n = 66) were diagnosed with metastases by using DOTATATE. Those with metastatic disease were more likely to exhibit a larger primary tumor size (median 3.4 vs. 1.2, cm, P < 0.001), elevated serum chromogranin A level (CgA, median 208 vs. 97, mg/ml, P = 0.005), and higher tumor grade (P < 0.001). Primary tumor size ≥2 cm and serum CgA level ≥150 ng/mL for metastatic disease had a sensitivity and specificity of 64% and 89%, and 72% and 59%, respectively. Multivariate analysis demonstrated that primary tumor size (≥2/<2, cm, odds ratio [OR] 47.90, P < 0.001), tumor functionality (functional/nonfunctional, adjusted OR 10.17 P = 0.008), serum CgA level (≥150/<150, ng/ml, OR 6.25, P = 0.005), and tumor grade G2 (G2/G1, OR 9.6, P < 0.001) were independently associated with metastases on DOTATATE. CONCLUSIONS: Among patients with GEP-NETs, primary tumor size ≥2 cm, serum CgA level ≥150 ng/mL, and tumor grade G2 are associated with an increased risk of metastases on DOTATATE, and these predictors may be helpful to identify patients where DOTATATE is indicated for complete staging.
Assuntos
Cromogranina A , Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/sangue , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/cirurgia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Feminino , Masculino , Cromogranina A/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Intestinais/sangue , Neoplasias Intestinais/patologia , Neoplasias Intestinais/diagnóstico por imagem , Neoplasias Gástricas/sangue , Neoplasias Gástricas/patologia , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Idoso , Prognóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Seguimentos , Biomarcadores Tumorais/sangue , Adulto , Carga Tumoral , Compostos Organometálicos , Compostos RadiofarmacêuticosRESUMO
The United States, the EU and Canada established a trilateral working group on the ecosystem approach to ocean health and stressors under the Atlantic Ocean Research Alliance. Recognizing the Atlantic Ocean as a shared resource and responsibility, the working group sought to advance understanding of the Atlantic Ocean and its dynamic systems to improve ocean health, enhance ocean stewardship and promote the sustainable use and management of its resources. This included consideration of multiple ocean-use sectors such as fishing, shipping, tourism and offshore energy. The working group met for 4 years and worked through eight steps that covered the development of common language as a basis for collaboration, challenges of stakeholder engagement, review of the governance mandates, exploring the links between sectors and ecosystems effects, identifying gaps in knowledge and uptake of science, identification of tools for ecosystem-based management, customary best practice for tool development and communication of key research priorities. The key findings were that ecosystem-based management enables new benefits and opportunities, and that we need to make the business case. Further findings were that adequate mandates and effective tools exist for ecosystem-based management, and that ecosystem-based management urgently requires integration of human dimensions, so we must diversify the conversation. In addition, it was found that stakeholders do not see their stake in ecosystem-based management, so greater engagement with stakeholders and targeting of ocean literacy is required and a sustainable future requires a sustained investment in ecosystem-based management, so long-term commitment is key.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Oceano Atlântico , Canadá , Comércio , Conservação dos Recursos Naturais/métodos , HumanosRESUMO
Implementing the Ecosystem Approach in marine ecosystems is moving from preliminary steps-dedicated to defining the optimal features for indicators and developing efficient indicator frameworks-towards an operational phase where multisector marine management decisions are executed using this information. Within this operational context, emergent ecosystem properties are becoming quite promising as they have been demonstrated to be globally widespread and repeatable, and to be quite effective in detecting significant state variations of complex systems. Biomass accumulation across TLs (CumB-TL) combines two important emergent properties of an ecosystem (energy flow, in terms of transfer efficiency, and storage, expressed as biomass), both amenable to detecting rapid ecosystem change. However, for further application, it is crucial to understand which types of drivers an indicator is sensitive to and how robust it is in relation to modifications of the external conditions and/or the system state. Here we address some outstanding questions of these CumB-TL curves related to their sensitivity to various drivers by carrying out a global scale assessment (using data from 62 LMEs) over six decades (1950-2010). We confirm the consistency of the S-pattern across all the LMEs, independent from latitude, ecosystem, environmental conditions, and stress level. The dynamics of the curve shape showed a tendency to stretch (i.e. decrease of steepness), in the presence of external disturbance and conversely to increase in steepness and shift towards higher TL in the case of recovery from stressed conditions. Our results suggest the presence of three main types of ecosystem dynamics, those showing an almost continuous increase in ecological state over time, those showing a continuous decrease in ecological state over time, and finally those showing a mixed behaviour flipping between recovering and degrading phases. These robust patterns suggest that the CumB-TL curve approach has some useful properties for use in further advancing the implementation of the Ecosystem Approach, allowing us to detect the state of a given marine ecosystem based on the dynamics of its curve shape, by using readily available time series data. The value of being able to identify conditions that might require management actions is quite high and, in many respects, represents the main objective in the context of an Ecosystem Approach, with large applications for detecting and responding to global changes in marine ecosystems.
Assuntos
Ecossistema , BiomassaRESUMO
The MYC family of proteins plays essential roles in embryonic development and in oncogenesis. Efforts over the past 30 years to define the transcriptional activities of MYC and how MYC functions to promote proliferation have produced evolving models of MYC function. One picture that has emerged of MYC and its partner protein MAX is of a transcription factor complex with a seemingly unique ability to stimulate the transcription of genes that are epigenetically poised for transcription and to amplify the transcription of actively transcribed genes. During lymphocyte activation, MYC is upregulated and stimulates a pro-proliferative program in part through the upregulation of a wide variety of metabolic effector genes that facilitate cell growth and cell cycle progression. MYC upregulation simultaneously sensitizes cells to apoptosis and activated lymphocytes and lymphoma cells have pro-survival attributes that allow MYC-driven proliferation to prevail. For example, the MAX-interacting protein MNT is upregulated in activated lymphocytes and was found to protect lymphocytes from MYC-dependent apoptosis. Here we review the activities of MYC, MNT and other MAX interacting proteins in the setting of T and B cell activation and oncogenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linfoma/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/genética , Linfócitos B/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Linfoma/metabolismo , Linfoma/patologia , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismoRESUMO
The economic and ecological impacts of fish consumption by marine mammals, the associated interactions with commercial fish stocks, and the forage demands of these marine mammal populations are largely unknown. Consumption estimates are often either data deficient or not fully evaluated in a rigorous, quantitative manner. Although consumption estimates exist for the Northeast United States (NEUS) Large Marine Ecosystem, there is considerable uncertainty in those estimates. We examined consumption estimates for 12 marine mammal species inhabiting the regional ecosystem. We used sensitivity analyses to examine metabolically driven daily individual consumption rates, resulting in a suite of feasible parameter-pair ranges for each of three taxonomic groups: mysticetes, odontocetes, and pinnipeds. We expanded daily individual consumption to annual consumption based on abundance estimates of marine mammals found on the NEUS continental shelf coupled with estimates of annual residence time for each species. To examine consumptive removals for specific prey, diet compositions were summarized into major prey categories, and predatory removals by marine mammal species as well as for total marine mammal consumption were estimated for each prey taxa. Bounds on consumption estimates for each marine mammal species were determined using Monte Carlo resampling simulations. Our results suggest that consumption for these 12 marine mammal species combined may be similar in magnitude to commercial fishery landings for small pelagic and groundfish prey groups. Consumption by marine mammals warrants consideration both as a source of mortality in assessments of prey-stocks, and to determine marine mammal forage demands in ecosystem assessment models. The approach that we present represents a rigorous, quantitative method to scope the bounds of the biomass that marine mammals are expected to consume, and is appropriate for use in other ecosystems where the interaction between marine mammals and commercial fisheries is thought to be prominent.
Assuntos
Cetáceos/fisiologia , Ecossistema , Comportamento Alimentar , Cadeia Alimentar , Focas Verdadeiras/fisiologia , Animais , Oceano Atlântico , Peso Corporal , Decapodiformes , Peixes , Estados UnidosRESUMO
Mnt (Max's next tango) is a Max-interacting transcriptional repressor that can antagonize both the proproliferative and proapoptotic functions of Myc in vitro. To ascertain the physiologically relevant functions of Mnt and to help define the relationship between Mnt and Myc in vivo, we generated a series of mouse strains in which Mnt was deleted in T cells in the absence of endogenous c-Myc or in the presence of ectopic c-Myc. We found that apoptosis caused by loss of Mnt did not require Myc but that ectopic Myc expression dramatically decreased the survival of both Mnt-deficient T cells in vivo and Mnt-deficient MEFs in vitro. Consequently, Myc-driven proliferative expansion of T cells in vitro and thymoma formation in vivo were prevented by the absence of Mnt. Consistent with T-cell models, mouse embryo fibroblasts (MEFs) lacking Mnt were refractory to oncogenic transformation by Myc. Tumor suppression caused by loss of Mnt was linked to increased apoptosis mediated by reactive oxygen species (ROS). Thus, although theoretically and experimentally a Myc antagonist, the dominant physiological role of Mnt appears to be suppression of apoptosis. Our results redefine the physiological relationship between Mnt and Myc and requirements for Myc-driven oncogenesis.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Proliferação de Células , Transformação Celular Neoplásica , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteínas Repressoras/fisiologia , Linfócitos T/citologia , Animais , Apoptose , Camundongos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Theoretical studies suggest that the abrupt and substantial changes in the productivity of some fisheries species may be explained by predation-driven alternate stable states in their population levels. With this hypothesis, an increase in fishing or a natural perturbation can drive a population from an upper to a lower stable-equilibrium population level. After fishing is reduced or the perturbation ended, this low population level can persist due to the regulatory effect of the predator. Although established in theoretical studies, there is limited empirical support for predation-driven alternate stable states in exploited marine fish populations. We present evidence that egg predation by haddock (Melanogrammus aeglefinus) can cause alternate stable population levels in Georges Bank Atlantic herring (Clupea harengus). Egg predation by haddock explains a substantial decoupling of herring spawning stock biomass (an index of egg production) from observed larval herring abundance (an index of egg hatching). Estimated egg survival rates ranged from <2-70% from 1971 to 2005. A population model incorporating egg predation and herring fishing explains the major population trends of Georges Bank herring over four decades and predicts that, when the haddock population is high, seemingly conservative levels of fishing can still precipitate a severe decline in the herring population. These findings illustrate how efforts to rebuild fisheries can be undermined by not incorporating ecological interactions into fisheries models and management plans.
Assuntos
Pesqueiros/métodos , Peixes , Óvulo , Comportamento Predatório , Animais , Modelos Teóricos , Dinâmica PopulacionalRESUMO
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly intratumorally heterogeneous disease that includes several subtypes and is highly plastic. Effective gene delivery to all PDAC cells is essential for modulating gene expression and identifying potential gene-based therapeutic targets in PDAC. Most current gene delivery systems for pancreatic cells are optimized for islet or acinar cells. Lentiviral vectors are the current main gene delivery vectors for PDAC, but their transduction efficiencies vary depending on pancreatic cell type, and are especially poor for the classical subtype of PDAC cells from both primary tumors and cell lines. Methods: We systemically compare transduction efficiencies of glycoprotein G of vesicular stomatitis virus (VSV-G)-pseudotyped lentiviral and Sendai viral vectors in human normal pancreatic ductal and PDAC cells. Results: We find that the Sendai viral vector gives the most robust gene delivery efficiency regardless of PDAC cell type. Therefore, we propose using Sendai viral vectors to transduce ectopic genes into PDAC cells.
RESUMO
BACKGROUND: Neoadjuvant therapy is being increasingly used for patients with pancreatic cancer. The role of adjuvant therapy in these patients is unclear. The purpose of this study was to identify clinical and pathologic characteristics that are associated with longer overall survival in patients with pancreatic cancer who receive adjuvant therapy after neoadjuvant therapy. METHODS: This study was conducted using multi-institutional data. All patients underwent surgery after at least 1 cycle of neoadjuvant therapy for pancreatic cancer. Patients who died within 3 months after surgery and were known to have distant metastasis or macroscopic residual disease were excluded. Mann-Whitney U test, χ2 analysis, Kaplan-Meier plot, and univariate and multivariate Cox regression analysis were performed as statistical analyses. RESULTS: In the present study, 529 patients with resected pancreatic cancer after neoadjuvant therapy were reviewed. For neoadjuvant therapy, 177 (33.5%) patients received neoadjuvant chemotherapy, and 352 (66.5%) patients received neoadjuvant chemoradiotherapy. The median duration of neoadjuvant therapy was 7.0 months (interquartile range, 5.0-8.7). Patients were followed for a median of 23.0 months after surgery. Adjuvant therapy was administered to 297 (56.1%) patients and was not associated with longer overall survival for the entire cohort (24 vs 22 months, P = .31). Interaction analysis showed that adjuvant therapy was associated with longer overall survival in patients who received less than 4 months neoadjuvant therapy (hazard ratio 0.40; 95% confidence interval 0.17-0.95; P = .03) or who had microscopic margin positive surgical resections (hazard ratio 0.56; 95% confidence interval 0.33-0.93; P = .03). CONCLUSION: In this retrospective study, there was a survival benefit associated with adjuvant therapy for patients who received less than 4 months of neoadjuvant therapy or had microscopic positive margins.
Assuntos
Terapia Neoadjuvante , Neoplasias Pancreáticas , Humanos , Estudos Retrospectivos , Estadiamento de Neoplasias , Terapia Combinada , Neoplasias Pancreáticas/patologia , Quimioterapia AdjuvanteRESUMO
Overfishing has severe social, economic, and environmental ramifications. Eliminating global overfishing is one of the United Nations' Sustainable Development Goals (SDGs). The SDGs require effective policy and progress monitoring. However, current indicators are issue-specific and cannot be utilized to measure fisheries efficacy holistically. This study develops a comprehensive index that takes into account the inputs, outputs, and ecological implications of fisheries. These components are then merged to form a single composite fishing index that evaluates both total fishing pressure on the ecosystem and historical patterns. The global fishing intensity grew by a factor of eleven between 1950 and 2017, and geographical differences emerged. The fishing intensity of developed countries peaked in 1997 and has since fallen due to management, but developing countries' fishing intensity has increased continuously over the whole research period, with quasi-linear growth after 1980. Africa has experienced the most rapid expansion in fishing activity and now has the highest fishing intensity. This index takes a more comprehensive and objective look at fisheries. Its worldwide spatial-temporal comparison enables the identification of similar temporal trends across countries or regions, as well as areas of uneven development and hotspot sites for targeted policy action.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , África , Pesqueiros , Caça , Humanos , AnimaisRESUMO
Here, we present a protocol to generate a murine model of liver metastasis by directly injecting tumor cells into the portal vein under ultrasound guidance. We describe steps for animal and cell preparation and two techniques for injecting tumor cells. One technique is freehand, while the other technique is device-assisted using a 3D-printed prototype device. Finally, we describe tumor surveillance with bioluminescent imaging.
RESUMO
PURPOSE: Stimulator of interferon genes (STING) agonists are currently in development for treatment of solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Response rates to STING agonists alone have been promising yet modest, and combination therapies will likely be required to elicit their full potency. We sought to identify combination therapies and mechanisms that augment the tumor cell-intrinsic effect of therapeutically relevant STING agonists apart from their known effects on tumor immunity. EXPERIMENTAL DESIGN: We screened 430 kinase inhibitors to identify synergistic effectors of tumor cell death with diABZI, an intravenously administered and systemically available STING agonist. We deciphered the mechanisms of synergy with STING agonism that cause tumor cell death in vitro and tumor regression in vivo. RESULTS: We found that MEK inhibitors caused the greatest synergy with diABZI and that this effect was most pronounced in cells with high STING expression. MEK inhibition enhanced the ability of STING agonism to induce type I IFN-dependent cell death in vitro and tumor regression in vivo. We parsed NFκB-dependent and NFκB-independent mechanisms that mediate STING-driven type I IFN production and show that MEK signaling inhibits this effect by suppressing NFκB activation. CONCLUSIONS: Our results highlight the cytotoxic effects of STING agonism on PDAC cells that are independent of tumor immunity and that these therapeutic benefits of STING agonism can be synergistically enhanced by MEK inhibition.
Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Interferon Tipo I , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismoRESUMO
A common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries. The 2021 WFC meeting, hosted remotely in Adelaide, Australia, marked the 30th year since the first meeting was held in Athens, Greece, and provided an opportunity to reflect on progress made in the past 30 years and provide guidance for the future. We assembled a diverse team of individuals involved with the Adelaide WFC and reflected on the major challenges that faced fish and fisheries over the past 30 years, discussed progress toward overcoming those challenges, and then used themes that emerged during the Congress to identify issues and opportunities to improve sustainability in the world's fisheries for the next 30 years. Key future needs and opportunities identified include: rethinking fisheries management systems and modelling approaches, modernizing and integrating assessment and information systems, being responsive and flexible in addressing persistent and emerging threats to fish and fisheries, mainstreaming the human dimension of fisheries, rethinking governance, policy and compliance, and achieving equity and inclusion in fisheries. We also identified a number of cross-cutting themes including better understanding the role of fish as nutrition in a hungry world, adapting to climate change, embracing transdisciplinarity, respecting Indigenous knowledge systems, thinking ahead with foresight science, and working together across scales. By reflecting on the past and thinking about the future, we aim to provide guidance for achieving our mutual goal of sustaining vibrant fish populations and sustainable fisheries that benefit all. We hope that this prospective thinking can serve as a guide to (i) assess progress towards achieving this lofty goal and (ii) refine our path with input from new and emerging voices and approaches in fisheries science, management, and stewardship.
RESUMO
As a transcription factor that promotes cell growth, proliferation, and apoptosis, c-MYC (MYC) expression in the cell is tightly controlled. Disruption of oncogenic signaling pathways in human cancers can increase MYC protein stability, due to altered phosphorylation ratios at two highly conserved sites, Threonine 58 (T58) and Serine 62 (S62). The T58 to Alanine mutant (T58A) of MYC mimics the stabilized, S62 phosphorylated, and highly oncogenic form of MYC. The S62A mutant is also stabilized, lacks phosphorylation at both Serine 62 and Threonine 58, and has been shown to be nontransforming in vitro. However, several regulatory proteins are reported to associate with MYC lacking phosphorylation at S62 and T58, and the role this form of MYC plays in MYC transcriptional output and in vivo oncogenic function is understudied. We generated conditional c-Myc knock-in mice in which the expression of wild-type MYC (MYCWT), the T58A mutant (MYCT58A), or the S62A mutant (MYCS62A) with or without expression of endogenous Myc is controlled by the T-cell-specific Lck-Cre recombinase. MYCT58A expressing mice developed clonal T-cell lymphomas with 100% penetrance and conditional knock-out of endogenous Myc accelerated this lymphomagenesis. In contrast, MYCS62A mice developed clonal T-cell lymphomas at a much lower penetrance, and the loss of endogenous MYC reduced the penetrance while increasing the appearance of a non-transgene driven B-cell lymphoma with splenomegaly. Together, our study highlights the importance of regulated phosphorylation of MYC at T58 and S62 for T-cell transformation. IMPLICATIONS: Dysregulation of phosphorylation at conserved T58 and S62 residues of MYC differentially affects T-cell development and lymphomagenesis.
Assuntos
Linfoma de Células T , Proteínas Proto-Oncogênicas c-myc , Treonina , Animais , Carcinogênese , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , Linfócitos T/metabolismo , Treonina/genética , Fatores de Transcrição/metabolismoRESUMO
We determine that type I interferon (IFN) response biomarkers are enriched in a subset of pancreatic ductal adenocarcinoma (PDAC) tumors; however, actionable vulnerabilities associated with IFN signaling have not been systematically defined. Integration of a phosphoproteomic analysis and a chemical genomics synergy screen reveals that IFN activates the replication stress response kinase ataxia telangiectasia and Rad3-related protein (ATR) in PDAC cells and sensitizes them to ATR inhibitors. IFN triggers cell-cycle arrest in S-phase, which is accompanied by nucleotide pool insufficiency and nucleoside efflux. In combination with IFN, ATR inhibitors induce lethal DNA damage and downregulate nucleotide biosynthesis. ATR inhibition limits the growth of PDAC tumors in which IFN signaling is driven by stimulator of interferon genes (STING). These results identify a cross talk between IFN, DNA replication stress response networks, and nucleotide metabolism while providing the rationale for targeted therapeutic interventions that leverage IFN signaling in tumors.
Assuntos
Carcinoma Ductal Pancreático/metabolismo , Interferon Tipo I/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Interferon Tipo I/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Nucleotídeos/antagonistas & inibidores , Nucleotídeos/biossíntese , Nucleotídeos/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias PancreáticasRESUMO
Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management.
Assuntos
Ecologia/métodos , Pesqueiros , Peixes , Modelos Biológicos , Comportamento Predatório , Animais , Ecossistema , Oceanos e MaresRESUMO
Mutations in fibroblast growth factor receptors (FGFRs) cause human birth defect syndromes and are associated with a variety of cancers. Although forced expression of mutant activated FGFRs has been shown to oncogenically transform some immortal cell types, their activity in primary cells remains unclear. Here, we show that birth defect and cancer-associated FGFR2 mutants promote DNA-damage signaling and p53-dependent senescence in primary mouse and human cells. Senescence promoted by FGFR mutants was associated with downregulation of c-Myc and forced expression of c-Myc facilitated senescence escape. Whereas c-Myc expression facilitated senescence bypass, mutant FGFR2 signaling suppressed c-Myc-dependent apoptosis and led to oncogenic transformation. Cells transformed by coexpression of a constitutively activated FGFR2 mutant plus c-Myc appeared to be become highly addicted to FGFR-dependent prosurvival activities, as small molecule inhibition of FGFR signaling resulted in robust p53-dependent apoptosis. Our data suggest that senescence-promoting activities of mutant FGFRs may normally limit their oncogenic potential and may be relevant to their ability to disrupt morphogenesis and cause birth defects. Our results also raise the possibility that cancers originating through a combination of constitutive FGFR activation and deregulated Myc expression may be particularly sensitive to small molecule inhibitors of FGF receptors.
Assuntos
Envelhecimento , Anormalidades Congênitas/metabolismo , Mutação , Neoplasias/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Animais , Linhagem Celular , Sobrevivência Celular , Transformação Celular Neoplásica , Células Cultivadas , Anormalidades Congênitas/genética , Anormalidades Congênitas/fisiopatologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Living marine resources (LMRs) contribute considerably to marine economies. Oceans continue to respond to the effects of global change, with environmental factors anticipated to impact future seafood production and its associated economic performance. Here we document novel relationships between primary productivity and LMR-based economics for US regional marine ecosystems and 64 international large marine ecosystems (LMEs). Intermediate relationships between production, total biomass, fisheries landings, revenue, and LMR-based employment are also elucidated. We found that all these factors were dependent on the amount of basal production in a given system. In addition, factors including human population, exploitation history, and governance interventions significantly influenced these relationships. As system productivity plays a foundational role in determining fisheries-based economics throughout global LMEs, greater accounting for these relationships has significant implications for global seafood sustainability and food security. Quantifying the direct link between primary production and fisheries economic performance serves to better inform ecosystem overfishing thresholds and their economic consequences. Further recognition and understanding of these relationships is key to ensuring that these connections are accounted for more effectively in sustainable management practices.
RESUMO
Single-cell combinatorial indexing (sci) with transposase-based library construction increases the throughput of single-cell genomics assays but produces sparse coverage in terms of usable reads per cell. We develop symmetrical strand sci ('s3'), a uracil-based adapter switching approach that improves the rate of conversion of source DNA into viable sequencing library fragments following tagmentation. We apply this chemistry to assay chromatin accessibility (s3-assay for transposase-accessible chromatin, s3-ATAC) in human cortical and mouse whole-brain tissues, with mouse datasets demonstrating a six- to 13-fold improvement in usable reads per cell compared with other available methods. Application of s3 to single-cell whole-genome sequencing (s3-WGS) and to whole-genome plus chromatin conformation (s3-GCC) yields 148- and 14.8-fold improvements, respectively, in usable reads per cell compared with sci-DNA-sequencing and sci-HiC. We show that s3-WGS and s3-GCC resolve subclonal genomic alterations in patient-derived pancreatic cancer cell lines. We expect that the s3 platform will be compatible with other transposase-based techniques, including sci-MET or CUT&Tag.