Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Exp Eye Res ; 233: 109554, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437835

RESUMO

The retina has a large demand for oxygen, but there is only limited information on differences between oxygen utilization (QO2) in the inner and outer retina, and limited data on mouse, which has become a prevalent animal model. This study utilized the isolated mouse retina, which allowed more detailed spatial analysis of QO2 than other methods. Oxygen sensitive microelectrodes were used to obtain profiles of oxygen tension across the isolated mouse retina, and mathematical models of retinal oxygen diffusion with four and five layers were fitted to the data to obtain values for QO2 of the outer retina (QOR) and inner retina (QIR). The boundaries between layers were free parameters in these models. The five-layer model resulted in lower error between the model and data, and agreed better with known anatomy. The three layers for the outer retina occupied half of the retina, as in prior work on rat, cat, and monkey, and the inner half of the retina could be divided into two layers, in which the one closer to the vitreous (layer 5) had much lower QO2 than the more distal inner retina (layer 4). QIR in darkness was 3.9 ml O2-100 g-1-min-1, similar to the value for intact cat retina, and did not change during light. QOR in darkness was 2.4 ml O2-100 g-1-min-1, lower than previous values in cat and rat, possibly because of damage to photoreceptors during isolation. There was a tendency for QOR to be lower in light, but it was not significant in this preparation.


Assuntos
Oxigênio , Retina , Ratos , Camundongos , Animais , Consumo de Oxigênio , Células Fotorreceptoras , Modelos Animais
2.
Exp Eye Res ; 221: 109133, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636490

RESUMO

Retinal neurons spend most of their energy to support the transmembrane movement of ions. Light-induced electrical activity is associated with a redistribution of ions, which affects the energy demand and results in a change in metabolism. Light-induced metabolic changes are expected to be different in distal and proximal retina due to differences in the light responses of different retinal cells. Extracellular K+ concentration ([K+]o) is a reliable indicator of local electrophysiological activity, and the purpose of this work was to compare [K+]o changes evoked by steady and flickering light in distal and proximal retina. Data were obtained from isolated mouse (C57Bl/6J) retinae. Double-barreled K+-selective microelectrodes were used to simultaneously record [K+]o and local ERGs. In the distal retina, photoreceptor hyperpolarization led to suppression of ion transfer, a decrease in [K+]o by 0.3-0.5 mM, reduced energy demand, and, as previously shown in vivo, decreased metabolism. Flickering light had the same effect on [K+]o in the distal retina as steady light of equivalent illumination. The conductance and voltage changes in postreceptor neurons are cell-specific, but the overall effect of steady light in the proximal retina is excitation, which is reflected in a [K+]o increase there (by a maximum of 0.2 mM). In steady light the [K+]o increase lasts only 1-2 s, but a sustained [K+]o increase is evoked by flickering light. A squarewave low frequency (1 Hz) flicker of photopic intensity produced the largest increases in [K+]o. Judging by measurements of [K+]o, steady illumination decreases energy metabolism in the distal retina, but not in the proximal retina (except for the first few seconds). Flickering light evokes the same decrease in the distal retina, but also evokes a sustained [K+]o increase in the proximal retina, suggesting an increase of metabolic demand there, especially at 1 Hz, when neurons of both on- and off-pathways appear to contribute maximally. This proximal retinal metabolic response to flicker correlates to the increase in blood flow during flicker that constitutes neurovascular coupling.


Assuntos
Luz , Retina , Animais , Metabolismo Energético , Camundongos , Estimulação Luminosa , Células Fotorreceptoras/metabolismo , Potássio/metabolismo , Retina/metabolismo
3.
Ann Neurol ; 87(3): 442-455, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31925846

RESUMO

OBJECTIVE: There are currently no definitive disease-modifying therapies for traumatic brain injury (TBI). In this study, we present a strong therapeutic candidate for TBI, immunomodulatory nanoparticles (IMPs), which ablate a specific subset of hematogenous monocytes (hMos). We hypothesized that prevention of infiltration of these cells into brain acutely after TBI would attenuate secondary damage and preserve anatomic and neurologic function. METHODS: IMPs, composed of US Food and Drug Administration-approved 500nm carboxylated-poly(lactic-co-glycolic) acid, were infused intravenously into wild-type C57BL/6 mice following 2 different models of experimental TBI, controlled cortical impact (CCI), and closed head injury (CHI). RESULTS: IMP administration resulted in remarkable preservation of both tissue and neurological function in both CCI and CHI TBI models in mice. After acute treatment, there was a reduction in the number of immune cells infiltrating into the brain, mitigation of the inflammatory status of the infiltrating cells, improved electrophysiologic visual function, improved long-term motor behavior, reduced edema formation as assessed by magnetic resonance imaging, and reduced lesion volumes on anatomic examination. INTERPRETATION: Our findings suggest that IMPs are a clinically translatable acute intervention for TBI with a well-defined mechanism of action and beneficial anatomic and physiologic preservation and recovery. Ann Neurol 2020;87:442-455.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Administração Intravenosa , Animais , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Movimento Celular/efeitos dos fármacos , Edema/complicações , Edema/tratamento farmacológico , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Imageamento por Ressonância Magnética , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neuroimagem , Recuperação de Função Fisiológica/efeitos dos fármacos
4.
Vis Neurosci ; 38: E010, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34294176

RESUMO

The electroretinogram (ERG) has been employed for years to collect information about retinal function and pathology. The usefulness of this noninvasive test depends on our understanding of the cell sources that generate the ERG. Important contributors to the ERG are glial Müller cells (MCs), which are capable of generating substantial transretinal potentials in response to light-induced changes in extracellular K+ concentration ([K+]o). For instance, the MCs generate the slow PIII (sPIII) component of the ERG as a reaction to a photoreceptor-induced [K+]o decrease in the subretinal space. Similarly, an increase of [K+]o related to activity of postreceptor retinal neurons also produces transretinal glial currents, which can potentially influence the amplitude and shape of the b-wave, one of the most frequently analyzed ERG components. Although it is well documented that the majority of the b-wave originates from On-bipolar cells, some contribution from MCs was suggested many years ago and has never been experimentally rejected. In this work, detailed information about light-evoked [K+]o changes in the isolated mouse retina was collected and then analyzed with a relatively simple linear electrical model of MCs. The results demonstrate that the cornea-positive potential generated by MCs is too small to contribute noticeably to the b-wave. The analysis also explains why MCs produce the large cornea-negative sPIII subcomponent of the ERG, but no substantial cornea-positive potential.


Assuntos
Eletrorretinografia , Células Ependimogliais , Animais , Camundongos , Microeletrodos , Estimulação Luminosa , Potássio , Retina
5.
PLoS Comput Biol ; 15(3): e1006894, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870418

RESUMO

Neuronal activity is associated with transmembrane ionic redistribution, which can lead to an osmotic imbalance. Accordingly, activity-dependent changes of the membrane potential are sometimes accompanied by changes in intracellular and/or extracellular volume. Experimental data that include distributions of ions and volume during neuronal activity are rare and rather inconsistent partly due to the technical difficulty of performing such measurements. However, progress in understanding the interrelations among ions, voltage and volume has been achieved recently by computational modelling, particularly "charge-difference" modelling. In this work a charge-difference computational model was used for further understanding of the specific roles for cations and anions. Our simulations show that without anion conductances the transmembrane movements of cations are always osmotically balanced, regardless of the stoichiometry of the pump or the ratio of Na+ and K+ conductances. Yet any changes in cation conductance or pump activity are associated with changes of the membrane potential, even when a hypothetically electroneutral pump is used in calculations and K+ and Na+ conductances are equal. On the other hand, when a Cl- conductance is present, the only way to keep the Cl-equilibrium potential in accordance with the changed membrane potential is to adjust cell volume. Importantly, this voltage-evoked Cl--dependent volume change does not affect intracellular cation concentrations or the amount of energy that is necessary to support the system. Taking other factors into consideration (i.e. the presence of internal impermeant poly-anions, the activity of cation-Cl- cotransporters, and the buildup of intra- and extracellular osmolytes, both charged and electroneutral) adds complexity, but does not change the main principles.


Assuntos
Homeostase , Potássio/metabolismo , Sódio/metabolismo , Simulação por Computador , Condutividade Elétrica , Metabolismo Energético , Transporte de Íons , Potenciais da Membrana , Concentração Osmolar
6.
Exp Eye Res ; 149: 16-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27262608

RESUMO

We hypothesized that the retina of diabetic animals would be unusually acidic due to increased glycolytic metabolism. Acidosis in tumors and isolated retina has been shown to lead to increased VEGF. To test the hypothesis we have measured the transretinal distribution of extracellular H(+) concentration (H(+)-profiles) in retinae of control and diabetic dark-adapted intact Long-Evans rats with ion-selective electrodes. Diabetes was induced by intraperitoneal injection of streptozotocin. Intact rat retinae are normally more acidic than blood with a peak of [H(+)]o in the outer nuclear layer (ONL) that averages 30 nM higher than H(+) in the choroid. Profiles in diabetic animals were similar in shape, but diabetic retinae began to be considerably more acidic after 5 weeks of diabetes. In retinae of 1-3 month diabetics the difference between the ONL and choroid was almost twice as great as in controls. At later times, up to 6 months, some diabetics still demonstrated abnormally high levels of [H(+)]o, but others were even less acidic than controls, so that the average level of acidosis was not different. Greater variability in H(+)-profiles (both between animals and between profiles recorded in one animal) distinguished the diabetic retinae from controls. Within animals, this variability was not random, but exhibited regions of higher and lower H(+). We conclude that retinal acidosis begins to develop at an early stage of diabetes (1-3 months) in rats. However, it does not progress, and the acidity of diabetic rat retina was diminished at later stages (3-6 months). Also the diabetes-induced acidosis has a strongly expressed local character. As result, the diabetic retinas show much wider variability in [H(+)] distribution than controls. pH influences metabolic and neural processes, and these results suggest that local acidosis could play a role in the pathogenesis of diabetic retinopathy.


Assuntos
Acidose/etiologia , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/metabolismo , Hidrogênio/metabolismo , Retina/metabolismo , Acidose/metabolismo , Acidose/patologia , Animais , Western Blotting , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/complicações , Retinopatia Diabética/patologia , Eletrorretinografia , Eletrodos Seletivos de Íons , Masculino , Ratos , Ratos Long-Evans , Retina/patologia , Retina/fisiopatologia
7.
Exp Eye Res ; 145: 148-157, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26639389

RESUMO

Double-barreled H(+)-selective microelectrodes were used to measure local extracellular concentration of H(+) ([H(+)]o) in the retina of dark-adapted anesthetized Long-Evans rats. The microelectrode advanced in steps of 30 µm throughout the retina from the vitreal surface to retinal pigment epithelium and then to the choroid, recording changes in [H(+)]o evoked by light stimulation. Recordings were performed in diabetic rats 1-3 months after intraperitoneal injection of streptozotocin and the results were compared with data obtained in age-matched control animals. Brief light stimulation (2.5 s) evoked changes of [H(+)]o with amplitudes of a few nM. Throughout the retina, there was a transient initial acidification for ∼200 ms followed by steady alkalinization, although amplitudes and kinetics of these components were slightly variable in different retinal layers. No significant difference was found when the light-induced [H(+)]o changes recorded in various retinal layers of early diabetic rats were compared with the [H(+)]o changes from corresponding layers of control animals. Also, when H(+)-selective microelectrodes were located in the retinal pigment epithelium (RPE) layer, an increase in H(+) was recorded, whose time course and amplitude were similar in control and diabetic rats. However, a striking difference between light-induced [H(+)]o changes in controls and diabetics was observed in the choriocapillaris, in the thin layer (10-20 µm) distal to the basal membrane of the RPE. In control rats, choroidal [H(+)]o decreased in a few cases, but much more often practically did not change. In contrast, diabetic rats demonstrated either an increase (in half of the cases) or no change in choroidal [H(+)]o. The data suggest that the active participation of the choroidal blood supply in stabilization of [H(+)]o could be partially compromised already at early stages of diabetes in rats. Interestingly, it appeared that the acid removal by the choroidal circulation was compromised most after 1 month of diabetes and tended to improve later.


Assuntos
Adaptação à Escuridão/fisiologia , Diabetes Mellitus Experimental , Retinopatia Diabética/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Retinopatia Diabética/diagnóstico , Eletrorretinografia , Concentração de Íons de Hidrogênio , Masculino , Microeletrodos , Estimulação Luminosa , Ratos , Ratos Long-Evans , Células Ganglionares da Retina/patologia , Fatores de Tempo
8.
Adv Exp Med Biol ; 876: 311-317, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26782227

RESUMO

In many tissues, PO2 fluctuates spontaneously with amplitudes of a few mmHg. Here we further characterized these oscillations. PO2 recordings were made from the whisker barrel cortex of six rabbits with acutely or chronically placed polarographic electrodes. Measurements were made while rabbits were awake and while anesthetized with isoflurane, during air breathing, and during 100% oxygen inspiration. In awake rabbits, 90% of the power was between 0 and 20 cycles per minute (cpm), not uniformly distributed over this range, but with a peak frequently near 10 cpm. This was much slower than heart or respiratory rhythms and is similar to the frequency content observed in other tissues. During hyperoxia, total power was higher than during air-breathing, and the dominant frequencies tended to shift toward lower values (0-10 cpm). These observations suggest that at least the lower frequency fluctuations represent efforts by the circulation to regulate local PO2. There were no consistent changes in total power during 0.5 or 1.5% isoflurane anesthesia, but the power shifted to lower frequencies. Thus, both hyperoxia and anesthesia cause characteristic, but distinct, changes in spontaneous fluctuations. These PO2 fluctuations may be caused by vasomotion, but other factors cannot be ruled out.


Assuntos
Oxigênio/análise , Córtex Somatossensorial/metabolismo , Anestesia , Animais , Coelhos
9.
Opt Lett ; 40(24): 5782-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670511

RESUMO

Fluorescein angiography (FA) is the current clinical imaging standard for vascular related retinal diseases such as macular degeneration and diabetic retinopathy. However, FA is considered invasive and can provide only two-dimensional imaging. In comparison, optical coherence tomography angiography (OCTA) is noninvasive and can generate three-dimensional imaging; investigations of OCTA already demonstrated great promise in retinal vascular imaging. Yet, to further develop and apply OCTA, strengths and weaknesses between OCTA and FA need to be thoroughly compared. To avoid complications in image registration, an ideal comparison requires co-registered and simultaneous imaging by both FA and OCTA. In this Letter, we developed a system with integrated laser-scanning ophthalmoscope FA (SLO-FA) and OCTA, and conducted simultaneous dual-modality retinal vascular imaging in rodents. In imaging healthy rodent eyes, OCTA can resolve retinal capillaries better than SLO-FA does, particularly deep capillaries. In imaging rodent eyes with laser-induced choroidal neovascularization (CNV), OCTA can identify CNV that eludes SLO-FA detection.


Assuntos
Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/etiologia , Angiofluoresceinografia/métodos , Lasers/efeitos adversos , Retina/fisiopatologia , Tomografia de Coerência Óptica/métodos , Animais , Camundongos , Ratos
10.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641415

RESUMO

Both the retina and brain exhibit neurovascular coupling, increased blood flow during increased neural activity. In the retina increased blood flow can be evoked by flickering light, but the magnitude of the metabolic change that underlies this is not known. Local changes in oxygen consumption (QO2) are difficult to measure in vivo when both supply and demand are changing. Here we isolated the C57BL/6J mouse retina and supplied it with oxygen from both sides of the tissue. Microelectrode recordings of PO2 were made in darkness and during 20 s of high scotopic flickering light at 1 Hz. Flicker led to a PO2 increase in the outer retina and a decrease in the inner retina, indicating that outer retinal QO2 (QOR) decreased and inner retinal QO2 (QIR) increased. A four-layer oxygen diffusion model was fitted to PO2 values obtained in darkness and at the end of flicker to determine the values of QOR and QIR. QOR in flicker was 76 ± 14% (mean and SD, n = 10) of QOR in darkness. The increase in QIR was smaller, 6.4 ± 5.0%. These metabolic changes are likely smaller than the maximum changes, because with no regeneration of pigment in the isolated retina, we limited the illumination. Further modeling indicated that at high illumination, QIR could increase by up to 45%, which is comparable to the magnitude of flow changes. This suggests that the blood flow increase is at least roughly matched to the increased metabolic demands of activity in the retina.


Assuntos
Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Oxigênio , Estimulação Luminosa , Retina , Animais , Retina/metabolismo , Consumo de Oxigênio/fisiologia , Estimulação Luminosa/métodos , Oxigênio/metabolismo , Oxigênio/sangue , Camundongos , Masculino , Luz , Escuridão , Acoplamento Neurovascular/fisiologia
11.
Curr Eye Res ; 49(1): 53-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37756520

RESUMO

PURPOSE: To understand the mechanism of changes in the c-wave of the electroretinogram (ERG) in diabetic rats, and to explore how glucose manipulations affect the c-wave. METHODS: Vitreal ERGs were recorded in control and diabetic Long-Evans rats, 3-60 weeks after IP vehicle or streptozotocin. A few experiments were performed on Brown Norway rats. Voltage responses to current pulses were used to measure the transepithelial resistance of the retinal pigment epithelium (RPE). RESULTS: During development of diabetes the b-wave amplitude progressively decreased to about half of the initial amplitude after a year. In contrast, the c-wave was strongly affected from the very beginning (3 weeks) of diabetes. In control rats, the c-wave was cornea-positive at lower illuminations but was cornea-negative at higher (photopic) illumination. In diabetics, the whole amplitude-intensity curve was shifted toward negativity. The magnitude of this shift was markedly affected by acute glucose manipulations in diabetics but not in controls. Increased blood glucose made the c-wave more negative, and decreased blood glucose with insulin had the opposite effect. Experimentally induced acidification of the retina had a small effect that was different from diabetes, shifting the c-wave toward positivity, slightly in controls and more noticeably in diabetics. One reason for the significant negativity of the diabetic ERG was a decrease of the cornea-positive response of the RPE due to a decrease of the transepithelial resistance. CONCLUSIONS: The ERG c-wave is more negative in diabetics than in control animals, and is far more sensitive to changes in blood glucose. The increased negativity is largely if not entirely due to changes in the transepithelial resistance of the RPE, an electrical analog of the breakdown of the blood-retinal barrier observed in other studies. The sensitivity of the c-wave to glucose in diabetics may also be due to changes in transepithelial resistance.


Assuntos
Acidose , Diabetes Mellitus Experimental , Hiperglicemia , Ratos , Animais , Glicemia , Ratos Long-Evans , Retina , Eletrorretinografia , Ratos Endogâmicos BN
12.
Mol Vis ; 19: 1538-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878504

RESUMO

PURPOSE: This study investigated changes in the transcript levels of genes related to glutamate neurotransmission and transport as diabetes progresses in the Long-Evans rat retina. Transcript levels of vascular endothelial growth factor (VEGF), erythropoietin, and insulin-like growth factor binding protein 3 (IGFBP3) were also measured due to their protective effects on the retinal vasculature and neurons. METHODS: Diabetes was induced in Long-Evans rats with a single intraperitoneal (IP) injection of streptozotocin (STZ; 65 mg/kg) in sodium citrate buffer. Rats with blood glucose >300 mg/dl were deemed diabetic. Age-matched controls received a single IP injection of sodium citrate buffer only. The retinas were dissected at 4 and 12 weeks after induction of diabetes, and mRNA and protein were extracted from the left and right retinas of each rat, respectively. Gene expression was analyzed using quantitative real-time reverse-transcription PCR. Enzyme-linked immunosorbent assay was used to quantify the concentration of VEGF protein in each retina. Statistical significance was determined using 2×2 analysis of variance followed by post-hoc analysis using Fisher's protected least squares difference. RESULTS: Transcript levels of two ionotropic glutamate receptor subunits and one glutamate transporter increased after 4 weeks of diabetes. In contrast, 12 weeks of diabetes decreased the transcript levels of several genes, including two glutamate transporters, four out of five N-methyl-D-aspartate (NMDA) receptor subunits, and all five kainate receptor subunits. Diabetes had a greater effect on gene expression of NMDA and kainate receptor subunits than on the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits, for which only GRIA4 significantly decreased after 12 weeks. VEGF protein levels were significantly increased in 4-week diabetic rats compared to age-matched control rats whereas the increase was not significant after 12 weeks. Transcript levels of VEGF and VEGF receptors were unchanged with diabetes. Erythropoietin and IGFBP3 mRNA levels significantly increased at both time points, and IGFBP2 mRNA levels increased after 12 weeks. CONCLUSIONS: Diabetes caused significant changes in the transcriptional expression of genes related to ionotropic glutamate neurotransmission, especially after 12 weeks. Most genes with decreased transcript levels after 12 weeks were expressed by retinal ganglion cells, which include glutamate transporters and ionotropic glutamate receptors. Two genes expressed by retinal ganglion cells but unrelated to glutamate neurotransmission, γ-synuclein (SNCG) and adenosine A1 receptor (ADORA1), also had decreased mRNA expression after 12 weeks. These findings may indicate ganglion cells were lost as diabetes progressed in the retina. Decreased expression of the glutamate transporter SLC1A3 would lead to decreased removal of glutamate from the extracellular space, suggesting that diabetes impairs this function of Müller cells. These findings suggest that ganglion cells were lost due to glutamate excitotoxicity. The changes at 12 weeks occurred without significant changes in retinal VEGF protein or mRNA, although higher VEGF protein levels at 4 weeks may be an early protective response. Increased transcript levels of erythropoietin and IGFBP3 may also be a protective response.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Retina/metabolismo , Transmissão Sináptica/genética , Animais , Transporte Biológico/genética , Glicemia/metabolismo , Peso Corporal/genética , Diabetes Mellitus Experimental/sangue , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Retina/patologia , Estreptozocina , Transcriptoma/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Exp Eye Res ; 102: 50-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22828049

RESUMO

The purpose of this study was to investigate the oxygen distribution and consumption in the pigmented Long-Evans rat retina in vivo during dark and light adaptation, and to compare these results to previous work on cat and albino rat. Double-barreled microelectrodes recorded both intraretinal PO(2) depth profiles and the electroretinogram (ERG), which was used to identify the boundaries of the retina. Light adaptation decreased photoreceptor oxygen consumption per unit volume (Q(av)) from 3.0 ± 0.4 ml·100 g(-1) min(-1) (mean ± SEM) in darkness to 1.8 ± 0.2 ml·100 g(-1) min(-1) and increased minimum outer retinal PO(2) at the inner segments (P(min)) from 17.4 ± 3.0 to 29.9 ± 5.3 mmHg. The effects of light on outer retinal PO(2) and Q(av) were similar to those previously observed in cat, monkey, and albino rats; however, dark-adapted P(min) was higher in rat than cat. The parameters derived from fitting the oxygen diffusion model to the rat data were compared to those from cat. Oxygen consumption of the inner segments (Q(2)) and choroidal PO(2) (P(C)) in rat and cat were similar. P(min) was higher in rat than in cat for two reasons: first, rat photoreceptors have a shorter oxygen consuming region; and second, the retinal circulation supplied a greater fraction of consumed oxygen to rat photoreceptors. The average PO(2) across the inner retina (P(IR)) was not different in dark adaptation (25.4 ± 4.8 mmHg) and light adaptation (28.8 ± 5.4 mmHg) when measured from PO(2) profiles. However, with the microelectrode stationary at 9-18% retinal depth, a small consistent decrease in PO(2) occurred during illumination. Flickering light at 6 Hz decreased inner retinal PO(2) significantly more than an equivalent steady illumination, suggesting that changes in blood flow did not completely compensate for increased metabolism. This study comprehensively characterized rat retinal oxygenation in both light and dark, and determined the similarities and differences between rat and cat retinas.


Assuntos
Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Retina/metabolismo , Animais , Gatos , Adaptação à Escuridão/fisiologia , Eletrorretinografia , Eletrodos Seletivos de Íons , Luz , Masculino , Microeletrodos , Modelos Biológicos , Células Fotorreceptoras de Vertebrados/metabolismo , Ratos , Ratos Long-Evans
14.
Front Cell Neurosci ; 16: 983298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339824

RESUMO

The dynamic interaction between excitatory and inhibitory activity in the brain is known as excitatory-inhibitory balance (EIB). A significant shift in EIB toward excitation has been observed in numerous pathological states and diseases, such as autism or epilepsy, where interneurons may be dysfunctional. The consequences of this on neurovascular interactions remains to be elucidated. Specifically, it is not known if there is an elevated metabolic consumption of oxygen due to increased excitatory activity. To investigate this, we administered microinjections of picrotoxin, a gamma aminobutyric acid (GABA) antagonist, to the rabbit cortex in the awake state to mimic the functional deficiency of GABAergic interneurons. This caused an observable shift in EIB toward excitation without the induction of seizures. We used chronically implanted electrodes to measure both neuronal activity and brain tissue oxygen concentrations (PO2) simultaneously and in the same location. Using a high-frequency recording rate for PO2, we were able to detect two important phenomena, (1) the shift in EIB led to a change in the power spectra of PO2 fluctuations, such that higher frequencies (8-15 cycles per minute) were suppressed and (2) there were brief periods (dips with a duration of less than 100 ms associated with neuronal bursts) when PO2 dropped below 10 mmHg, which we defined as the threshold for hypoxia. The dips were followed by an overshoot, which indicates either a rapid vascular response or decrease in oxygen consumption. Our results point to the essential role of interneurons in brain tissue oxygen regulation in the resting state.

16.
Ann Biomed Eng ; 48(6): 1590-1615, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253615

RESUMO

Undergraduate education in biomedical engineering (BME) and bioengineering (BioE) has been in place for more than 50 years. It has been important in shaping the field as a whole. The early undergraduate programs developed shortly after BME graduate programs, as universities sought to capitalize on the interest of students and the practical advantages of having BME departments that could control their own resources and curriculum. Unlike other engineering fields, BME did not rely initially on a market for graduates in industry, although BME graduates subsequently have found many opportunities. BME undergraduate programs exploded in the 2000s with funding from the Whitaker Foundation and resources from other agencies such as the National Institute of Biomedical Imaging and Bioengineering. The number of programs appears to be reaching a plateau, with 118 accredited programs in the United States at present. We show that there is a core of material that most undergraduates are expected to know, which is different from the knowledge base of other engineers not only in terms of biology, but in the breadth of engineering. We also review the role of important organizations and conferences in the growth of BME, special features of BME education, first placements of BME graduates, and a few challenges to address in the future.


Assuntos
Engenharia Biomédica/educação , Engenharia Biomédica/história , Emprego , História do Século XX , História do Século XXI , Humanos , Universidades
17.
Heliyon ; 6(12): e05686, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33367124

RESUMO

Ketamine/xylazine anesthesia has been used primarily for short term procedures in animals, but two prior reports used intravenous ketamine/xylazine for experiments taking many hours. However, there is a discrepancy about the appropriate dose, which is resolved here. Adult Long-Evans rats were used for recording from the retina. Doses of Ketamine/xylazine were adjusted to minimize anesthetic in terminal experiments lasting 10 h. An allometric relation was fitted to the resulting data on doses as a function of body weight, and compared to prior work. The allometric relationship between the continuously infused specific dose and weight was: dose = 9.13 (weight)-1.213 (r2 = 0.73), where dose is in mg-kg-1-hr-1 and rat weight is in kg. The dose of xylazine was 3.3% of the ketamine dose. No attempt was made to explore different relative doses of xylazine and ketamine. Prior work is consistent with this relationship, showing that the earlier discrepancy resulted from using rats of different sizes. Ketamine at the doses used here still depressed the electroretinogram relative to historical controls using urethane. We conclude that intravenous ketamine dosing in rats should not use the same mg-kg-1-hr-1 dose for all rats, but take into account the strong allometric relationship between dose and rat weight. There is an advantage in using smaller doses in order to prevent unnecessary depression of neural responses.

18.
Ann Biomed Eng ; 48(3): 905-912, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32026231

RESUMO

This paper provides a synopsis of discussions related to biomedical engineering core curricula that occurred at the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. This discussion focused on six key questions: QI: Is there a core curriculum, and if so, what are its components? QII: How does our purported core curriculum prepare students for careers, particularly in industry? QIII: How does design distinguish BME/BIOE graduates from other engineers? QIV: What is the state of engineering analysis and systems-level modeling in BME/BIOE curricula? QV: What is the role of data science in BME/BIOE undergraduate education? QVI: What core experimental skills are required for BME/BIOE undergrads? s. Indeed, BME/BIOI core curricula exists and has matured to emphasize interdisciplinary topics such as physiology, instrumentation, mechanics, computer programming, and mathematical modeling. Departments demonstrate their own identities by highlighting discipline-specific sub-specialties. In addition to technical competence, Industry partners most highly value our students' capacity for problem solving and communication. As such, BME/BIOE curricula includes open-ended projects that address unmet patient and clinician needs as primary methods to prepare graduates for careers in industry. Culminating senior design experiences distinguish BME/BIOE graduates through their development of client-centered engineering solutions to healthcare problems. Finally, the overall BME/BIOE curriculum is not stagnant-it is clear that data science will become an ever-important element of our students' training and that new methods to enhance student engagement will be of pedagogical importance as we embark on the next decade.


Assuntos
Engenharia Biomédica/educação , Currículo , Ciência de Dados , Humanos , Estudantes , Universidades
19.
Mol Vis ; 15: 296-311, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19204789

RESUMO

PURPOSE: A gene expression analysis of hypoxic rat retina was undertaken to gain a deeper understanding of the possible molecular mechanisms that underlie hypoxia-induced retinal pathologies and identify possible therapeutic targets. METHODS: Rats were made severely hypoxic (6%-7% O(2)) for 3 h. Some rats were sacrificed at this time, and others were allowed to recover for 24 h under normoxic conditions. A focused oligonucleotide microarray of 1,178 genes, qRT-PCR of selected transcripts, and western analysis of hypoxia inducible factor-1alpha (HIF-1alpha) were used to compare retinas from the hypoxic and recovery groups to control animals that were not made hypoxic. SAM analysis was used to identify statistically significant changes in microarray data, and the bioinformatics programs GoMiner, Gene Set Enrichment Analysis (GSEA), and HiMAP were used to identify significant ontological categories and analyze the N-methyl-D-aspartate (NMDA) receptor interactome. RESULTS: HIF-1alpha protein, but not mRNA, was elevated up to 15-fold during hypoxia, beginning at 0.5 h, the shortest duration examined. Of the total of 1,178 genes examined by microarray, 119 were significantly upregulated following hypoxia. Of these, 86 were still significantly upregulated following recovery. However, 24 genes were significantly downregulated following hypoxia, with 12 still significantly downregulated after recovery. Of the 1035 genes that did not change with hypoxia, the expression of 36 genes was significantly changed after recovery. Ontological analyses showed significant upregulation of a large number of genes in the glutamate receptor family, including 3 of the 5 NMDA subunits. qRT-PCR analysis further corroborated these findings. Genes known to directly interact specifically with the NR1 subunit of the NMDA receptor were identified using HiMAP databases. GSEA analysis revealed that these genes were not affected by either hypoxia or altered after recovery. CONCLUSIONS: The identification of gene expression alterations as a function of hypoxia and recovery from hypoxia is important to understand the molecular mechanisms underlying retinal dysfunction associated with a variety of diseases. Gene changes were identified in hypoxic retina that could be linked to specific networks. Retinas recovering from hypoxia also showed distinct patterns of gene expression that were different from both normoxic control retinas and hypoxic retinas, indicating that hypoxia initiates a complex pattern of gene expression. Diseases of which hypoxia is a component may exhibit the several changes found here. Several potential therapeutic targets have been identified by our approach, including modulation of NMDA receptor expression and signaling, which until now have only been shown to play a role in responding to ischemia.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia/genética , Receptores de N-Metil-D-Aspartato/genética , Retina/metabolismo , Análise de Variância , Animais , Perfilação da Expressão Gênica , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/metabolismo , Estatísticas não Paramétricas , Estresse Fisiológico/genética
20.
Trans Am Clin Climatol Assoc ; 120: 287-95, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19768183

RESUMO

Understanding the pathogenesis of obesity is now more important than ever, given the remarkable world-wide epidemic. This paper explores the potential role of core temperature in energy balance, and develops the hypothesis that basal temperature and changes in the temperature response in various situations contribute to the enhanced metabolic efficiency of the obese state. The argument is based on the important contribution that heat production makes in establishing the basal or resting metabolic rate, as well as on an analysis of the adaptive role played by changes in temperature in response to environmental challenge. If this hypothesis is validated, new therapeutic approaches may ensue.


Assuntos
Temperatura Corporal/fisiologia , Obesidade/fisiopatologia , Adaptação Fisiológica , Tecido Adiposo Marrom/fisiologia , Animais , Metabolismo Basal , Metabolismo Energético , Humanos , Modelos Biológicos , Atividade Motora , Obesidade/etiologia , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA