Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Can J Microbiol ; 70(5): 163-177, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350082

RESUMO

Global warming-induced sea ice loss in the Canadian Northwest Passage (NWP) will result in more shipping traffic, increasing the risk of oil spills. Microorganisms inhabiting NWP beach sediments may degrade hydrocarbons, offering a potential bioremediation strategy. In this study, the characterization and genomic analyses of 22 hydrocarbon-biodegradative bacterial isolates revealed that they contained a diverse range of key alkane and aromatic hydrocarbon-degradative genes, as well as cold and salt tolerance genes indicating they are highly adapted to the extreme Arctic environment. Some isolates successfully degraded Ultra Low Sulfur Fuel Oil (ULSFO) at temperatures as low as -5 °C and high salinities (3%-10%). Three isolates were grown in liquid medium containing ULSFO as sole carbon source over 3 months and variation of hydrocarbon concentration was measured at three time points to determine their rate of hydrocarbon biodegradation. Our results demonstrate that two isolates (Rhodococcus sp. R1B_2T and Pseudarthrobacter sp. R2D_1T) possess complete degradation pathways and can grow on alkane and aromatic components of ULSFO under Arctic conditions. Overall, these results demonstrate that diverse hydrocarbon-degrading microorganisms exist in the NWP beach sediments, offering a potential bioremediation strategy in the events of a marine fuel spill reaching the shores of the NWP.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Hidrocarbonetos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Regiões Árticas , Canadá , Poluição por Petróleo , Filogenia , Água do Mar/microbiologia
2.
Environ Microbiome ; 19(1): 72, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294752

RESUMO

BACKGROUND: Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to characterize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential for hydrocarbon degradation in these microbiomes. RESULTS: We observed taxonomic and functional gene evidence supporting the potential of NWP beach microbes to degrade various types of hydrocarbons. The metagenomic and metagenome-assembled genome (MAG) taxonomy showed that known hydrocarbon-degrading taxa are present in these beaches. Additionally, we detected the presence of biomarker genes of aerobic and anaerobic degradation pathways of alkane and aromatic hydrocarbons along with complete degradation pathways for aerobic alkane degradation. Alkane degradation genes were present in all samples and were also more abundant (33.8 ± 34.5 hits per million genes, HPM) than their aromatic hydrocarbon counterparts (11.7 ± 12.3 HPM). Due to the ubiquity of MAGs from the genus Rhodococcus (23.8% of the MAGs), we compared our MAGs with Rhodococcus genomes from NWP isolates obtained using hydrocarbons as the carbon source to corroborate our results and to develop a pangenome of Arctic Rhodococcus. Our analysis revealed that the biodegradation of alkanes is part of the core pangenome of this genus. We also detected nitrogen and sulfur pathways as additional energy sources and electron donors as well as carbon pathways providing alternative carbon sources. These pathways occur in the absence of hydrocarbons allowing microbes to survive in these nutrient-poor beaches. CONCLUSIONS: Our metagenomic analyses detected the genetic potential for hydrocarbon biodegradation in these NWP shoreline microbiomes. Alkane metabolism was the most prevalent type of hydrocarbon degradation observed in these tidal beach ecosystems. Our results indicate that bioremediation could be used as a cleanup strategy, but the addition of adequate amounts of N and P fertilizers, should be considered to help bacteria overcome the oligotrophic nature of NWP shorelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA