Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 31(4): e02317, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33636021

RESUMO

Grassland ecosystems account for approximately 40% of terrestrial biomes globally. These communities are characterized by a large allocation to belowground biomass, often exceeding its aboveground counterpart. However, this biomass investment cannot be entirely attributed to the acquisitive function of roots. Grassland plants also allocate to non-acquisitive, stem-derived, belowground organs, such as rhizomes. These organs are responsible for the key plant functions of space occupancy, resprouting after damage, and seasonal rest. However, biomass investment to rhizomes has rarely been studied. Here we gathered community-level aboveground and rhizome biomass data for 52 temperate grasslands in Czech Republic (Central Europe), differing in management intensity. We found that rhizome biomass scaled linearly with aboveground biomass, and more intensive management disproportionally (negatively) affected rhizome biomass. This finding may have important implications for the persistence of temperate grassland plants and their provision of ecosystem services (e.g., soil carbon sequestration, soil stabilization) in relation to changing environments.


Assuntos
Ecossistema , Pradaria , Biomassa , Europa (Continente) , Rizoma , Solo
2.
Ecol Evol ; 13(10): e10569, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780093

RESUMO

Ants disperse seeds of many plant species adapted to myrmecochory. While advantages of this ant-plant mutualism for myrmecochorous plants (myrmecochores) have been previously studied in temperate region mostly in forests, our study system was a pasture. Moreover, we used a unique combination of observing the effect of ant-activity suppression on ant dispersal and comparison of the contribution of ant and unassisted dispersal to the distance from mother plant. We established plots without and with ant-activity suppression (enclosures). We offered diaspores of a myrmecochorous (Knautia arvensis), and a non-myrmecochorous (Plantago lanceolata) species in a choice test and followed ants carrying diaspores during days and nights (focus of previous studies was on diurnal dispersal). We measured frequency and distances of ant dispersal and compared them with unassisted dispersal recorded using sticky trap method. The dispersal frequency was lower in enclosures (3.16 times). Ants strongly preferred diaspores of the myrmecochore to non-myrmecochore with 586 and 42 dispersal events, respectively (out of 6400 diaspores of each species offered). Ant dispersal resulted in more even and on average longer distances (maximum almost tenfold longer, 994 cm) in comparison to unassisted dispersal. Ant dispersal altered the distribution of distances of the myrmecochore from roughly symmetric for unassisted dispersal to positively skewed. Ants dispersed heavier diaspores farther. Ants dropped the majority of diaspores during the dispersal (which reduces clustering of seeds), while several (11%) were carried into anthills. Anthills are disturbed microsites presumably favorable for germination in competitive habitats. Ants provided non-negligible dispersal services to myrmecochorous K. arvensis but also, to a lesser extent, of non-myrmecochorous P. lanceolata.

3.
Appl Plant Sci ; 10(2): e11466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495190

RESUMO

Premise: Few studies have explored competition in fern gametophyte populations. One limiting factor is the tedious measurement of gametophyte size as a proxy for biomass in these small plants. Here, an alternative approach of estimating the number of green pixels from photos was employed to measure the competitive interactions among apomictic and sexual Dryopteris gametophytes. Methods: We cultivated the gametophytes of two apomictic (diploid and triploid) and one sexual (tetraploid) Dryopteris species in monocultures and in two-species mixtures in the ratios 1 : 1 and 1 : 3. The total gametophyte cover of each population originating from 20 spores was assessed using Easy Leaf Area. Assessments were performed weekly between weeks 4 and 10 of cultivation. Additionally, during week 5, the cover of each species in each mixture was estimated separately. Results: We identified a positive correlation between gametophyte size and ploidy level as well as sexual reproduction. The performance of the tested species in mixtures was dependent on the competitor species identity, indicating the importance of competition between gametophytes. Discussion: The methods outlined can be used for a rapid assessment of fern gametophyte cover in large gametophyte populations. Ploidy level and reproduction type seem to play a major role in the competitive abilities of fern gametophytes, but more research is needed on this topic.

4.
Int J Parasitol ; 52(2-3): 97-110, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34302843

RESUMO

Myxozoa represent a diverse group of microscopic cnidarian endoparasites alternating between invertebrate and vertebrate hosts. Of the approximately 2,600 species described predominantly from teleost fish, only 1.8% have been reported from cartilaginous fishes (Elasmobranchii). As ancestral vertebrate hosts of myxozoans, elasmobranchs may have played an important role in myxozoan evolution, however, they are also some of the largest vertebrate hosts known for this group of parasites. We screened 50 elasmobranchs belonging to nine species and seven families, from various geographical areas, for myxozoan infection. We found a 22% overall prevalence of myxozoans in elasmobranchs and describe five species new to science. We investigated, for the first known time, the evolution of spore size within three phylogenetic clades, Ceratomyxa, Sphaerospora sensu stricto and Parvicapsula. We found that spores from elasmobranch-infecting myxozoans were on average 4.8× (Ceratomyxa), 2.2× (Parvicapsula clade) and 1.8× (Sphaerospora sensu stricto except polysporoplasmic Sphaerospora spp.) larger than those from teleosts. In all analysed clades, spore size was correlated with phylogenetic position. In ceratomyxids, it was further strongly positively correlated with fish body size and habitat depth, independent of cellular composition of the spores and phylogenetic position in the tree. While in macroparasites a host size-correlated increase in parasite size occurs on a large scale and is often related to improved exploitation of host resources, in microscopic parasites size ranges vary at the scale of a few micrometres, disproportionate to the available additional space in a large host. We discuss the ecological role of these changes with regard to transmission under high pressure and an invertebrate fauna that is adapted to deeper marine habitats.


Assuntos
Elasmobrânquios , Doenças dos Peixes , Myxozoa , Parasitos , Doenças Parasitárias em Animais , Animais , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Humanos , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , Filogenia , Esporos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA