Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mar Drugs ; 20(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736151

RESUMO

Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Animais , Cromatografia Líquida , Ciguatera/etiologia , Ciguatoxinas/análise , Dinoflagellida/química , Polinésia , Espectrometria de Massas em Tandem
2.
Mar Drugs ; 19(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34940656

RESUMO

Ciguatera poisoning is caused by the ingestion of fish or shellfish contaminated with ciguatoxins produced by dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa. Unlike in the Pacific region, the species producing ciguatoxins in the Atlantic Ocean have yet to be definitely identified, though some ciguatoxins responsible for ciguatera have been reported from fish. Previous studies investigating the ciguatoxin-like toxicity of Atlantic Gambierdiscus species using Neuro2a cell-based assay identified G. excentricus as a potential toxin producer. To more rigorously characterize the toxin profile produced by this species, a purified extract from 124 million cells was prepared and partial characterization by high-resolution mass spectrometry was performed. The analysis revealed two new analogs of the polyether gambierone: sulfo-gambierone and dihydro-sulfo-gambierone. Algal ciguatoxins were not identified. The very low ciguatoxin-like toxicity of the two new analogs obtained by the Neuro2a cell-based assay suggests they are not responsible for the relatively high toxicity previously observed when using fractionated G. excentricus extracts, and are unlikely the cause of ciguatera in the region. These compounds, however, can be useful as biomarkers of the presence of G. excentricus due to their sensitive detection by mass spectrometry.


Assuntos
Dinoflagellida , Éteres/farmacologia , Toxinas Marinhas/farmacologia , Animais , Organismos Aquáticos , Oceano Atlântico , Linhagem Celular Tumoral/efeitos dos fármacos , Ciguatera , Éteres/química , Humanos , Toxinas Marinhas/química
3.
Proc Natl Acad Sci U S A ; 114(19): 4975-4980, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439007

RESUMO

Global ocean temperatures are rising, yet the impacts of such changes on harmful algal blooms (HABs) are not fully understood. Here we used high-resolution sea-surface temperature records (1982 to 2016) and temperature-dependent growth rates of two algae that produce potent biotoxins, Alexandrium fundyense and Dinophysis acuminata, to evaluate recent changes in these HABs. For both species, potential mean annual growth rates and duration of bloom seasons significantly increased within many coastal Atlantic regions between 40°N and 60°N, where incidents of these HABs have emerged and expanded in recent decades. Widespread trends were less evident across the North Pacific, although regions were identified across the Salish Sea and along the Alaskan coastline where blooms have recently emerged, and there have been significant increases in the potential growth rates and duration of these HAB events. We conclude that increasing ocean temperature is an important factor facilitating the intensification of these, and likely other, HABs and thus contributes to an expanding human health threat.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Eutrofização , Aquecimento Global , Ácido Okadáico/metabolismo , Saxitoxina/biossíntese , Oceano Atlântico , Humanos , Ácido Okadáico/toxicidade , Oceano Pacífico , Saxitoxina/toxicidade
4.
J Phycol ; 55(3): 730-732, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30817008

RESUMO

The two most toxic Gambierdiscus species identified from the Caribbean are G. excentricus and G. silvae. These species are the primary causes of ciguatera fish poisoning and likely contribute disproportionately to the toxicity of marine food webs. While Gambierdiscus species are difficult to distinguish using light or scanning electron microscopy, reliable species-specific molecular identification methods have been developed and used successfully to identify a number of other Gambierdiscus species. Corresponding species-specific assays are not yet available for G. excentricus and G. silvae, which imposes limitations on species identification and related ecological studies. The following note describes species-specific polymerase chain reaction assays for G. excentricus and G. silvae that can be used for these purposes.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Animais , Região do Caribe , Filogenia , Reação em Cadeia da Polimerase
5.
Mar Drugs ; 16(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642418

RESUMO

The sea urchin Tripneustes gratilla (Toxopneustidae, Echinoids) is a source of protein for many islanders in the Indo-West Pacific. It was previously reported to occasionally cause ciguatera-like poisoning; however, the exact nature of the causative agent was not confirmed. In April and July 2015, ciguatera poisonings were reported following the consumption of T.gratilla in Anaho Bay (Nuku Hiva Island, Marquesas archipelago, French Polynesia). Patient symptomatology was recorded and sea urchin samples were collected from Anaho Bay in July 2015 and November 2016. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of ciguatoxins (CTXs) in T.gratilla samples. Gambierdiscus species were predominant in the benthic assemblages of Anaho Bay, and G.polynesiensis was highly prevalent in in vitro cultures according to qPCR results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major ciguatoxin congener in toxic sea urchin samples, followed by 51-OH-P-CTX-3C, P-CTX-3C, P-CTX-4A, and P-CTX-4B. Between July 2015 and November 2016, the toxin content in T.gratilla decreased, but was consistently above the safety limit allowed for human consumption. This study provides evidence of CTX bioaccumulation in T.gratilla as a cause of ciguatera-like poisoning associated with a documented symptomatology.


Assuntos
Ciguatera/etiologia , Ciguatoxinas/análise , Dinoflagellida , Ouriços-do-Mar/microbiologia , Alimentos Marinhos/toxicidade , Idoso , Animais , Baías , Bioensaio/métodos , Linhagem Celular Tumoral , Ciguatera/epidemiologia , Ciguatera/prevenção & controle , Ciguatoxinas/toxicidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polinésia/epidemiologia , Alimentos Crus/microbiologia , Alimentos Crus/toxicidade , Alimentos Marinhos/microbiologia , Testes de Toxicidade/métodos
6.
Mar Drugs ; 15(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696398

RESUMO

Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Oxocinas/química , Oxocinas/toxicidade , Animais , Bioensaio/métodos , Brasil , Região do Caribe , Linhagem Celular Tumoral , Ciguatera/genética , Ciguatera/parasitologia , Ciguatoxinas/toxicidade , Camundongos , Filogenia , Espanha , Especificidade da Espécie
7.
Phycologia ; 56(3): 303-320, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32831405

RESUMO

Paralytic shellfish poisoning (PSP) poses a serious health threat in Alaska and prevents effective utilization of shellfish resources by subsistence and recreational harvesters. Substantial economic losses also affect shellfish growers during PSP events. The toxins responsible for PSP are produced by dinoflagellates in the genus Alexandrium. Despite the persistent threat posed by PSP and the long history of shellfish toxicity research, there is still confusion concerning the Alexandrium species that cause PSP in Alaska. The primary objective of this study was to identify the toxic Alexandrium species present in Alaska and to develop polymerase chain reaction (PCR) assays for use in screening phytoplankton and sediment samples. Before developing the PCR assays for this study, we evaluated published assays and many were not adequate because of primer dimer formation or because of cross-reactivity. Rather than continue to grapple with the uncertainty and inadequacy of published assays, we developed new assays for the Alexandrium species most likely to be present in Alaska. Only Alexandrium fundyense Group I and A. ostenfeldii were identified from four sampling regions from southeast Alaska to Kodiak Island, indicating that these two species are widely distributed. PCR assays for these two species were converted to quantitative (q)PCR format for use in monitoring programs. During the course of this study, we realized that a systematic evaluation of all published (~150) Alexandrium species-specific assays would be of benefit. Toward this objective, we collated published Alexandrium PCR, qPCR, and in situ hybridization assay primers and probes that targeted the small-subunit (SSU), internal transcribed spacer (ITS/5.8S), or D1-D3 large-subunit (LSU) (SSU/ITS/LSU) ribosomal DNA genes. Each individual primer or probe was screened against the GenBank database and Alexandrium gene sequence alignments constructed as part of this study. These data were used to identify a suite of species-specific Alexandrium assays that can be recommended for evaluation by the global harmful algal bloom community.

9.
J AOAC Int ; 97(2): 345-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830146

RESUMO

Mortalities of California sea lions (Zalophus californianus) attributed to the neurotoxin domoic acid (DA) produced by the diatom Pseudo-nitzschia have occurred repeatedly along the U.S. west coast since the late 1990s. Quantifying the amount of DA in these animals and correlating this information with the presence of DA in phytoplankton and the local food web has become a research focus for many scientists. However, differences in materials, equipment, technical capability, budgets, and objectives of the various groups and/or agencies involved in this work have influenced the DA quantification platforms used. The goal of the present study was to compare the performance of two commercially available ELISAs for the determination of DA in a spectrum of California sea lion body fluids and to compare the results with LC/MS of the same samples. The results indicated differences among these approaches, presumably owing to matrix effects (particularly urine) and antibody reactivities. This information implies that care should be taken in attempting to compare datasets generated using different analytical platforms and interpreting the results of published studies.


Assuntos
Líquidos Corporais/química , Ensaio de Imunoadsorção Enzimática/veterinária , Ácido Caínico/análogos & derivados , Leões-Marinhos , Animais , Anticorpos , Cromatografia Líquida/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Ácido Caínico/química , Espectrometria de Massas , Fármacos Neuromusculares Despolarizantes/química , Reprodutibilidade dos Testes
10.
Phytochemistry ; 222: 114095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631521

RESUMO

Dinoflagellates of the genus Gambierdiscus have been associated with ciguatera, the most common non-bacterial fish-related intoxication in the world. Many studies report the presence of potentially toxic Gambierdiscus species along the Atlantic coasts including G. australes, G. silvae and G. excentricus. Estimates of their toxicity, as determined by bio-assays, vary substantially, both between species and strains of the same species. Therefore, there is a need for additional knowledge on the metabolite production of Gambierdiscus species and their variation to better understand species differences. Using liquid chromatography coupled to mass spectrometry, toxin and metabolomic profiles of five species of Gambierdiscus found in the Atlantic Ocean were reported. In addition, a molecular network was constructed aiming at annotating the metabolomes. Results demonstrated that G. excentricus could be discriminated from the other species based solely on the presence of MTX4 and sulfo-gambierones and that the variation in toxin content for a single strain could be up to a factor of two due to different culture conditions between laboratories. While untargeted analyses highlighted a higher variability at the metabolome level, signal correction was applied and supervised multivariate statistics performed on the untargeted data set permitted the selection of 567 features potentially useful as biomarkers for the distinction of G. excentricus, G. caribaeus, G. carolinianus, G. silvae and G. belizeanus. Further studies will be required to validate the use of these biomarkers in discriminating Gambierdiscus species. The study also provided an overview about 17 compound classes present in Gambierdiscus, however, significant improvements in annotation are still required to reach a more comprehensive knowledge of Gambierdiscus' metabolome.


Assuntos
Dinoflagellida , Oceano Atlântico , Dinoflagellida/química , Dinoflagellida/metabolismo , Espectrometria de Massas , Cromatografia Líquida , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA